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Preface

While nonequilibrium Green’s Functions (NEGFs) are a mature theory with a his-
tory of some 50 years, it is only recently that they have turned into a practical tool
for quantitative analysis in many-body physics [1–4]. Despite the attractive features
of NEGFs—generality and selfconsistency, conservation laws, diagram technique
and applicability to ultrafast processes—the relatively large computational effort in
treating the dynamics of functions that depend on two times has prevented a broad
use of this technique.

Yet, the dramatic progress in available computational resources has made NEGF
calculations practical, as was demonstrated by many applications to spatially ho-
mogeneous systems in nuclear matter, plasmas and condensed matter systems over
the last 15 years. Recently, attempts have been made to extend the use of NEGFs to
spatially inhomogeneous systems which requires a substantially increased numeri-
cal effort. However, new strategies such as the finite element-discrete variable repre-
sentation, the generalized Kadanoff-Baym ansatz (GKBA), and clever program par-
allelization make such applications well feasible. This monograph discusses these
techniques in detail and should pave the way for a broad application of NEGFs to
inhomogeneous systems that are of great importance in atomic, condensed matter
and high energy physics.

Acknowledgments We thank Sebastian Bauch for close collaboration over the
last years and Sebastian Hermanns for providing numerical results based on the
GKBA, cf. Sect. 5.2.1. This monograph has greatly benefited from discussions with
students and postdocs at the chair of MB in Kiel, in particular, Alexei Filinov and
David Hochstuhl, as well as many colleagues from the Nonequilibrium Green’s
functions community, first of all Pawel Danielewicz, Robert van Leeuwen, Vaclav
Špička, Arnau Rios Huguet and Matthias Garny.
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Chapter 1
Quantum Many-Particle Systems
out of Equilibrium

In various fields of physics, the out-of-equilibrium dynamics of interacting quan-
tum many-body systems are of fundamental interest, both, theoretically and exper-
imentally. This includes applications in condensed matter physics—from quantum
transport and molecular electronics to few-electron dynamics in quantum confined
systems; atomic and molecular physics—electron dynamics following photoexcita-
tion and photoionization, plasma physics—laser-matter interaction; and high energy
physics—nuclear collisions, baryogenesis and much more.

The interest in ultrafast excitation and relaxation is triggered by the practical
needs of nanoelectronics, on the one hand, and by the availability of ultrashort co-
herent light sources, on the other. Intense lasers and free electron lasers now provide
femtosecond and subfemtosecond pulses from the infrared to the X-ray range pos-
ing fundamental questions about the behavior of matter at ultrashort time scales.
Among the questions of interest are

• single and double ionization cross sections of atoms and molecules on the fem-
tosecond scale,

• many-electron effects during photoionization (shake up and Auger processes),
• non-linear effects at high intensity, time-dependent energy renormalization,
• decay of initial correlations and dynamics of the formation of correlations,
• dynamics of the formation of quasiparticles,
• ultrafast electron dynamics in semiconductor devices, dynamics of screening,
• ultrafast spin dynamics,
• ultrafast double excitations in atoms and condensed matter, carrier multiplica-

tion1,
• dynamics of few-electron systems, quantum normal modes as novel diagnostics,
• dynamics of fermionic and bosonic systems in traps or optical lattices,
• ultrafast dynamics of quantum coherence effects such as entanglement, superflu-

idity and superconductivity.

1E.g., Ref. [5].

K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to
Inhomogeneous Systems, Lecture Notes in Physics 867,
DOI 10.1007/978-3-642-35082-5_1, © Springer-Verlag Berlin Heidelberg 2013

3

http://dx.doi.org/10.1007/978-3-642-35082-5_1


4 1 Quantum Many-Particle Systems out of Equilibrium

This list can be extended arbitrarily. A theoretical description of the phenomena
listed above requires a self-consistent description of spin statistics, interaction and
correlation effects, field-matter interaction, bound and scattering states, embedding
into an environment etc. All this should be described in a nonequilibrium fashion
without any a-priori assumption on time scale separation, weakness of the external
perturbations or weakness of spatial inhomogeneity. While this sounds a bit like a
“theory of everything”, in fact, as we will show in this monograph, nonequilibrium
Green’s functions (NEGFs) provide the framework to self-consistently capture all
these effects. Naturally, one has to pay a price: First, the computational effort is
higher than for most alternative approaches, and, second, there are situations that
are particularly difficult for Green’s functions in nonequilibrium, most importantly,
strongly correlated systems. After these general introductory remarks, we now turn
to a more detailed discussion of interaction and correlation effects and to a compari-
son of NEGFs with alternative theoretical and computational approaches in quantum
many-body physics.

The fundamental starting point for the analysis of the quantum few- or many-
particle dynamics is (if relativistic effects can be neglected) the time-dependent
Schrödinger equation (TDSE),

i�
∂

∂t

∣
∣Ψ (t)

〉= Ĥ (t)
∣
∣Ψ (t)

〉

, (1.1)

where the time-dependent wave function of the system is denoted by |Ψ (t)〉 and
Ĥ (t) is the Hamilton operator, Ĥ (t) = T̂ + V̂ (t)+Ŵ , containing the kinetic (T̂ ) and
potential energy (V̂ ) of each individual particle as well as the interaction energy Ŵ

between all pairs. Further, V̂ is understood to include confinement potentials, time-
dependent external fields and so on. In practice, the wave function |Ψ (t)〉 depends
on many degrees of freedom, such as particle positions, spin, angular momentum,
etc., and must be completely (anti-)symmetric with respect to particle exchange for
bosons (fermions).

Unfortunately, also with the help of the most powerful computers, the direct nu-
merical solution of Eq. (1.1) is possible only for small systems. This is due to (i) the
coupling of the individual particle motion through all kinds of interactions2 and
(ii) due to the dimension of the attributed Hilbert space which scales exponentially
with the particle number. In full dimensionality, “small” means usually systems in-
volving a few particles. Moreover, Eq. (1.1) describes only the dynamics of a pure
quantum state. In cases where a coupling to the environment is essential this de-
scription has to be replaced by a mixed ensemble.

To overcome the computational bottleneck of the TDSE, we in this article, resort
to a reduced system description on the basis of nonequilibrium Green’s function
techniques. The central quantity is the one-particle nonequilibrium Green’s function

2Typically, this concerns charge and spin interactions. Note that, in the absence of charge inter-
actions, the many-body TDSE decouples into a set of one-particle equations. Aside from proper
(anti-)symmetrization, the determination of the wave function is then usually simple.
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(1pNEGF) which appears as a two-time generalization of the one-particle reduced
density matrix,

G
(1)
ij

(

t, t ′
)= − i

�

〈

T̂C ĉi (t)ĉ
†
j

(

t ′
)〉

. (1.2)

Here, T̂C {ĉi (t) ĉ
†
j (t

′)} is a time-ordered3 product of one-particle annihilation and
creation operators in the Heisenberg picture (cf. Chap. 2), and i and j label all
degrees of freedom other than temporal ones, e.g., particle position and spin. More-
over, the brackets denote an appropriate ensemble averaging and, hence, account
for the multi-particle nature of the problem under investigation. In the limit of equal
times, the common one-particle reduced density matrix (1pRDM) is recovered from
Eq. (1.2) by,

ρ1,ij (t) = −i�G(1)
ij

(

t, t+
)

, (1.3)

where ρ1,ij (t) = 〈ĉ†
j (t)ĉi (t)〉, and t+ indicates that the second time argument of the

1pNEGF is infinitesimal larger than the first one (leading to the appropriate order of
the ĉ-operators).

In order to give a general idea of how the use of NEGFs compares with other
methods that are suited to describe the time evolution of a generic quantum many-
body system, we give a brief overview on some existing computational approaches
in the next Section.

1.1 Overview on Computational Approaches

Alongside the method of NEGFs, there exist a variety of other approaches which
are capable to describe the behavior of quantum many-body systems far from equi-
librium. In distinct ways, all of them can be introduced as being complementary to
the solution of the time-dependent Schrödinger equation, Eq. (1.1). Among the most
common approaches are,

(i) Time-dependent density functional theory (TDDFT), e.g., Ref. [6]: TDDFT
takes great advantage of the fact that the fundamental equivalence of the many-
body wave function and the electronic density does not only hold in equilib-
rium [7] but is also applicable for time-dependent systems [8]. The basic equa-
tions to be solved are the Kohn-Sham equations for an associated, fictitiously
non-interacting system.

(ii) Time-dependent reduced density matrix approaches, e.g., Refs. [9, 10]: Here, in
general, a small set of integro-differential equations of the quantum BBGKY
(Bogolyubov-Born-Green-Kirkwood-Yvon) hierarchy is solved for the time-
dependent reduced density matrix [11]. In practice, this scheme requires a

3Time ordering is here understood as ordering along the Schwinger-Keldysh contour, for details,
see Sect. 2.1.1.
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memory integration and a suitable approximation for a specific s-particle den-
sity matrix. It is widely used to develop quantum kinetic equations (master
equations).

(iii) Time-dependent density-matrix renormalization group (TDDMRG) approaches,
e.g., Refs. [12, 13]: In general, all methods based on DMRG can be formulated
as being variational in the space of matrix product states [14] and allow for an
efficient treatment of effective degrees of freedom.

(iv) Continuous-time (diagrammatic) quantum Monte Carlo (CTQMC), e.g., [15]
and references therein: In this method, all possible configurations that con-
tribute to the one-particle nonequilibrium Green’s function of the system are
sampled by a Monte Carlo algorithm in a time-dependent fashion on the full
Schwinger-Keldysh time contour, cf. Sect. 2.1.1.

(v) Multiconfiguration time-dependent Hartree-Fock (MCTDHF), e.g., Refs. [16,
17]: Here, aside from time-dependent coefficients, also the one-particle orbitals
in a configuration interaction (CI) expansion of the correlated many-body wave
function become time-dependent (minimizing the action functional). At the
same time, one restricts oneself to include only a few Slater determinants in
the expansion. Their number acts as a convergence parameter.

All approaches mentioned in (i) to (v) have their own limitations and their indi-
vidual range of applicability. Though TDDFT, for example, allows for an accurate
calculation of excitation energies [18], response properties [19] and photoabsorp-
tion spectra of even very complex molecules [20], it requires reasonable assump-
tions for the generally unknown exchange-correlation potential. Further, TDDMRG
can make use of its inherent advantages mainly in the treatment of one-dimensional
systems and is not easily extendable to 2D [21]. On the other hand, while CTQMC
generally suffers from a dynamical sign problem which limits the real-time prop-
agation to rather short times, the convergence of MCTDHF may be slow with the
number of Slater determinants used in the expansion of the many-particle wave
function.

Formally, the reduced density matrix approach (ii) is closely related (e.g.,
Ref. [22]) to the NEGF framework the application of which to spatially inhomo-
geneous quantum systems is the objective of the present article. The BBGKY hi-
erarchy therein plays the same role as the Martin-Schwinger (MS) hierarchy in the
context of the Keldysh-Kadanoff-Baym equations (KBEs)—the equations of motion
for the NEGF, see Sect. 2.2.1. However, the introduction of systematic many-body
approximations (MBAs) is often difficult in a density matrix approach. For further
simplification, one often resorts to the Markov limit, e.g., [10], which destroys total
energy conservation and does not allow to describe ultrafast dynamics [11]. On the
contrary, the use of nonequilibrium Green’s functions allows one to derive conserv-
ing MBAs directly by Feynman diagram technique and thus makes the inclusion of
correlation and memory effects simple and self-consistent. This aspect reveals one
of the main strengths of the NEGF approach.

Another advantage that encourages the use of Green’s functions is the fact that
there is no (dynamical) sign problem as it occurs in fermionic quantum Monte Carlo,
i.e., bosons and fermions can be treated on the same footing using the concept of
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second quantization4. Furthermore, it allows one to describe quantum many-body
systems at, both, zero and finite temperatures, and even in general nonequilibrium
situations. This is not possible in (standard versions5 of) TDDFT and MCTDHF
which make direct use of a pure-state wave function.

In principle, the computation of the time evolution of the 1pNEGF from the
Kadanoff-Baym equations is only limited by the available computer power. Thereby,
the main difficulty is the generic two-time structure of the KBEs which consumes
many resources. Nevertheless, there also exist simplifications such as the general-
ized Kadanoff Baym ansatz (GKBA) [23] (cf. Sect. 2.4.2) that allow one to treat the
KBEs in the single-time limit. This drastically reduces the computational effort and
enables calculations for larger systems and the investigation of the system behavior
on longer time scales.

From a more conceptual point of view, the equations of motion for the NEGF
are also an optimal starting point to systematically derive other (potentially simpler)
kinetic and transport equations, see, e.g., Refs. [24–26] for an overview. Along this
line, we emphasize that even Boltzmann- or Landau-type equations for the Wigner
distribution function [27] can be obtained directly by applying the GKBA and per-
forming a subsequent separation of time scales, see Ref. [28].

With the above paragraphs, we do not wish to give the impression that a NEGF
approach is—in all aspects—superior to other methods. However, we want to em-
phasize that it provides a very general many-body framework which can be applied
to basically all finite and extended quantum many-body systems whether in equilib-
rium, in nonequilibrium, at zero or at finite temperatures.

1.2 Many-Body Interactions in Inhomogeneous Quantum
Systems

In this article, we concentrate on quantum many-body systems which are inhomo-
geneous in coordinate space. This means that—besides the kinetic energy T̂ and
the particle-particle interaction Ŵ—the Hamiltonian in Eq. (1.1) contains an addi-
tional contribution V̂ describing the change of the single-particle potential energy
as function of all particle positions: V̂ (r1, . . . , rN) =∑N

i=1 v(1)(ri ), where the sys-
tem is assumed to contain only a single species (one-component system). Typically,
the potential V̂ acts as a confinement such that the system—if there is no periodicity
involved—is finite, and the NEGF vanishes outside of a certain range. However, this
does not necessarily imply that there exist no regions where the particles can move
quasi-freely. For example, in atoms or molecules, the motion of a single electron
far away from any nuclei is practically unbounded and can be well described by a

4See Sect. 2.1 and Appendix A.
5For completeness we mention finite temperature extensions of equilibrium DFT developed by
Mermin [29] and others, e.g., [30] and of equilibrium CI and MCHF, e.g., [31].
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freely propagating wave packet. To incorporate such circumstances in a NEGF ap-
proach one needs to be able to describe, simultaneously, discrete (bound) states and
continuum states. In general, this is a challenging task and requires an appropriate
representation of the NEGF, cf. Chap. 3.

A central question for the construction of a many-body theory is to properly
quantify the strength of interaction and correlation effects. This problem is well
familiar from spatially homogeneous systems such as the electron gas or the jellium
model. For example, the ground state of the electron gas is governed by the ratio
of two relevant energies—the mean interaction energy and mean kinetic energy or,
equivalently, the Brueckner parameter rs (coupling parameter) which is the ratio
of two relevant length scales—the mean interparticle distance 〈r〉 and the effective
Bohr radius a0, e.g., Ref. [32],

rs = 〈r〉
a0

∼ 〈Ŵ 〉
〈T̂ 〉 . (1.4)

While for rs � 1 the system resembles a nearly ideal quantum gas (Fermi gas), for
rs � 1 the particle density becomes localized in space and the behavior resembles
that of a strongly correlated nearly classical system such as a Wigner crystal. For
intermediate values of rs a number of non-trivial phases exist.

For a confined system with a general pair interaction Ŵ the situation is more
complex since there exists an additional energy scale related to the mean confine-
ment energy 〈V̂ 〉. Again, the state of the system can be characterized by the ratio
of two energy scales6 or, alternatively, two length scales, one (l0) characterizing the
effective range of the confinement. For example, for a harmonic confinement po-
tential with frequency ω, the proper scale is the extension of the ground-state wave
function, l0 = (�/mω)1/2. On the other hand, in a square well potential such as in
a quantum well of thickness L, a proper choice is l0 = L (see Sect. 6.2). A suitable
coupling parameter is then,

λ = 〈Ŵ 〉
〈V̂ 〉 =

(
l0

a0

)k

, (1.5)

where k is a positive parameter depending on the interaction potential. For λ � 1,
corresponding to a large confinement frequency, as in the homogeneous case above,
the interaction is weak and there is a strong wave function overlap corresponding to
a nearly ideal quantum gas behavior. In contrast, for large λ (small ω), particles are
localized and strongly interacting, behaving similarly to a classical system.

Note that a problem in a confinement potential is typically related to a finite
particle number N . If N is small (on the order of 100 or below) symmetry and shell
effects may become relevant and the system properties explicitly depend on N . If
all parameters (including ω) are fixed and N is increased, the system approaches

6In fact, due to the Virial theorem, mean kinetic energy and mean potential energy are related to
one another.
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an ideal quantum gas, in case of Coulomb interaction and a harmonic confinement.
This somewhat counter-intuitive result was obtained by Abraham et al. [33] and
indicates interesting properties of finite trapped systems.

For finite temperatures, the concept of the coupling parameter holds as well but
one has to compare the interaction energy to the mean kinetic energy (thermal av-
erage), e.g., [34]. But with the additional thermal energy scale (kBT ) it is clear that
the system behavior is governed by two dimensionless parameters instead of a single
parameter. A possible choice would be the inverse temperature in units of the oscil-
lator energy, β = �ω/kBT , and the coupling parameter λ. If β � 1 the system is
close to the (quantum) ground state whereas for β < 1 thermal effects are essential,
and eventually the system approaches semi-classical behavior.

In nonequilibrium where the system is excited, e.g., by electrical or optical fields,
in general, the concept of coupling strengths and coupling parameters is much more
complex. But in the important case of weak excitation, when linear response theory
is applicable, the interaction strength is adequately captured by ground-state (or
equilibrium) results.

For the purposes of the present monograph, we are primarily interested in the
regime of small to moderate coupling, where λ is smaller than or of the order of
one and β > 1. In the limit λ � 1, we thereby expect that the application of MBAs
that are of low order in the interaction Ŵ lead to accurate results. This is the regime
where NEGFs can be efficiently applied to compute the nonequilibrium response
to an external perturbation (weak or strong) since low-order approximations such
as Hartree Fock plus second Born approximation can be evaluated at reasonable
computational cost. This does not exclude larger couplings, where sometimes sim-
ple correlation corrections to the mean-field description can yield acceptable results
(compare with Chaps. 5 and 6).

1.3 Correlations

In a very general picture, the term “correlation” is used to describe all binary in-
teractions being present in a classical or quantum system that contains more than
just a single particle. In a many-electron system, for example, one often means the
entirety of all Coulomb repulsions between the electrons. However, in many-body
theory (classical or quantum), the term “correlation” is used more specifically. Here,
it indicates those parts of the instantaneous interactions that cannot be described by
a structureless mean field created by all particles. In a mathematical sense, correla-
tions are due to those interaction contributions that cannot be described by an effec-
tive independent-particle model with a quadratic (second-quantized) Hamiltonian.
In perturbation theory, this refers to all interaction effects that cannot be explained
by common Hartree-Fock (HF) self-consistent field methods [35] and thus require
advanced methodologies. A “correlated treatment” of a many-body problem there-
fore requires a specific method that is capable to go beyond the HF level. Along
these lines, a suitable method for ground-state calculations is, e.g., Møller-Plesset
perturbation theory, e.g., [36].



10 1 Quantum Many-Particle Systems out of Equilibrium

In many cases, correlation effects7 are important for the system properties. In
atomic and molecular physics, they are, e.g., crucial for the electronic structure,
the total energy and the formation of chemical bonds. In multi-electron atoms, the
most prominent consequence of correlations is the presence of resonance states that
can decay by autoionization (Auger decay) [37]. In molecular systems, a similar
result is the appearance of conical intersections, see, e.g., Ref. [38]. Regarding
nonequilibrium situations, electron correlations, for instance, influence the intense-
field ionization of atoms and molecules. This becomes most obvious in the context
of non-sequential double ionization, e.g., [17, 39, 40], and shake-up excitation pro-
cesses [41]. On the other hand, in condensed matter systems, correlations are inter
alia responsible for the presence of multi-faceted (e.g., metal-insulator-type) phase
diagrams, high-temperature superconductivity and magnetism [42]. For an overview
on correlations effects in semiconductors, see, e.g., Ref. [43]. Finally, we note that
correlations are related also to the topic of entanglement [44] and are therefore also
of great importance in the field of quantum computation [45].

What really drives the theoretical investigation of many-body correlation effects
is the fact that an increasing number of experimental techniques become available
that allow one to probe correlation effects in a time-dependent fashion [46, 47].
These techniques include COLTRIMS8 and reaction microscopes [48] which, in
coincidence, can measure the vector momenta of electronic and nuclear fragments
after field-induced ionization and/or dissociation processes. On top of this, elec-
tron correlation effects themselves are today of technological importance as they
are exploited to generate ultra-short and coherent radiation [49]. Another powerful
technique that can probe correlation effects in a time-resolved manner is a streak
camera which has achieved sub-femtosecond resolution [50] and extensions to the
VUV9 frequency range relevant for free electron lasers [51]. Typical correlation ef-
fects probed with streak cameras are related to Auger decay and so-called post col-
lision interaction where two electrons in the continuum exchange energy [52, 53].

In the recent decades, there has been much progress in computational ab initio
methods to account for correlation effects in equilibrium and nonequilibrium quan-
tum many-body systems. While, in the TDSE, correlation effects are represented by
time-local interaction contributions, in the Kadanoff-Baym equations, they enter in
form of memory or retardation effects and a non-Markovian time evolution of the
nonequilibrium Green’s functions. This means that the complete future evolution of
the system depends, in general, on the NEGF at all previous times, cf. Sect. 2.2.1.
Taking the Markov limit in the KBEs leads to substantially simpler expressions for
the collision integrals, including the familiar Landau, Boltzmann or Balescu-Lenard
integrals. However, at the same time, this limit drastically alters the properties of the
theory. The original conservation law of total energy is radically altered, and only
kinetic (single-particle) energy is preserved, e.g., [11]. Also, the short-time behavior

7In the refined sense.
8Abbreviation for “cold target recoil ion momentum spectroscopy”, e.g., [54].
9Vacuum ultra-violet radiation (�200 nm).
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of the system is no longer accessible. Finally, a Markovian theory even fails to de-
liver the correct asymptotic states and the thermodynamic functions of a correlated
many-body system but converges, instead, to the functions of an ideal (classical or
quantum) gas. All this underlines again the importance of a full NEGF approach
that overcomes these deficiencies.



Part II
Theory



Chapter 2
Nonequilibrium Green’s Functions

Real-time nonequilibrium Green’s functions (NEGFs) naturally appear in the ex-
tension of the Matsubara formalism of (equilibrium) quantum many-body the-
ory [55, 56] to situations far from equilibrium. In this respect, the term “one-particle
NEGF”, cf. Sect. 2.1.2, is synonymous for the phrase “propagator” as well as for
“correlation function”. The great success of NEGFs is, in general, due to the fact that
fundamentals of equilibrium theory, e.g., Feynman rules and diagram techniques,
can be applied without major conceptual modifications also to nonequilibrium situ-
ations.

Nonequilibrium Green’s functions are the main ingredients to quantum statisti-
cal mechanics and quantum kinetic equations [11], the development of which was
pioneered by Martin [57] and Schwinger [58] and was expedited by Kadanoff and
Baym [28] in the USA and, in parallel, by Keldysh [59] in the USSR. The main
achievements were rendered in the late 1950s and in the 1960s and were stimu-
lated by quantum field theory. Since then, NEGFs have become standard tools to
derive quantum transport models on various levels of sophistication, e.g., Refs. [24–
26, 60, 61], and have been applied to give quantum corrections to the Boltzmann
equation [62–64]. On the other hand, NEGFs have nowadays1, reached the poten-
tial to numerically treat time-dependent quantum systems more or less ab-initio2. To
this end, one solves the basic equations of motion for the one-particle NEGF—the
(Keldysh-)Kadanoff-Baym equations (KBEs)—and obtains statistical and dynam-
ical information about the system even in the presence of strong external driving
forces. For an overview, see Part IV of this monograph.

1Due to the continuously increasing power of computers.
2By this we mean that the equations of motion are formally exact with the accuracy determined by
the choice (approximation) of a single function—the self-energy.

K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to
Inhomogeneous Systems, Lecture Notes in Physics 867,
DOI 10.1007/978-3-642-35082-5_2, © Springer-Verlag Berlin Heidelberg 2013
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2.1 Introduction

Our ultimate goal is the description of time-dependent processes in a fully interact-
ing quantum many-body system of identical particles.

Using second quantization methods and fermionic creation (f̂ †
i ) and annihilation

(f̂i ) operators acting on a many-particle state |{n}〉 in Fock space3, see Appendix A,
we consider a generic time-dependent many-body Hamiltonian,

Ĥ (t) =
∑

ij

〈i|h(1)(t)|j 〉f̂ †
i f̂j + 1

2

∑

ij,kl

〈ij |w(2)|kl〉f̂ †
i f̂

†
j f̂l f̂k,

h(1)(t) = t (1) + v(1)(t),

(2.1)

where t (1) (v(1)) is the kinetic (potential) energy of a single particle, w(2) denotes
the two-body interaction potential, and 〈i|h(1)(t)|j 〉 and 〈ij |w(2)|kl〉 are the corre-
sponding matrix elements, cf. Eq. (A.18). The great advantage of the second quan-
tization formulation is that the anticommutation relations4,

[

f̂i , f̂
†
j

]

+ = δij ,
[

f̂i , f̂j

]

+ = [f̂ †
i , f̂

†
j

]

+ = 0, (2.2)

take care of the correct symmetry of the many-body state. Moreover, the creation
and annihilation operators often facilitate a simple form of single-particle operators.
While the number operator is just n̂i = f̂

†
i f̂i , the one-particle reduced density matrix

(1pRDM) operator reads,

ρ̂1,ij = f̂
†
i f̂j . (2.3)

This matrix of operators yields after ensemble averaging the familiar one-particle
density matrix ρ1,ij = 〈ρ̂1,ij 〉. Below, we will express it in terms of the single-
particle Green’s function, cf. Eq. (2.15).

In quantum mechanics, there exist different ways (“pictures”) to account for
time dependencies in a system. Despite their mathematical equivalence, the one
or the other may allow for a more advantageous formulation of the problem con-
sidered. NEGFs make essential use of the Heisenberg picture (H). In contrast to the
Schrödinger picture (S), where the system’s state vector Ψ

(N)
S evolves in time and

operators of observables are stationary, the Heisenberg picture allows for the opera-
tors to develop with time—at simultaneously time-independent states. The transfor-
mation between S and H is mediated by the unitary time evolution operator5 which
obeys the Schrödinger equation,

i�
∂

∂t ′
Û
(

t ′, t
)= Ĥ

(

t ′
)

Û
(

t ′, t
)

, (2.4)

3f̂
†
i (f̂i ) adds (removes) a particle to (from) a spin orbital |i〉, e.g., Ref. [36].

4The anticommutator is defined as [â, b̂]+ = âb̂ + b̂â. In the case of bosons, the same expressions
hold with the commutator [·, ·]+ → [·, ·]−.
5In matrix representation, the unitarity is expressed by Û†Û = 1.
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with the initial condition Û (t, t) = 1. The solution is,

Û
(

t ′, t
) = T̂ exp

(

− i

�

∫ t ′

t

dt̄ Ĥ (t)

)

,

Û
(

t, t ′
)

Û
(

t ′, t
) = 1,

(2.5)

where Ĥ (t) is the full Hamiltonian, and T̂ is the standard time-ordering operator6.
For any operator ÂH in the Heisenberg picture, it is,

ÂH(t) = Û(t0, t)ÂSÛ (t, t0), (2.6)

i�
∂

∂t
ÂH(t) =

[

ÂH(t), ĤH(t)
]

− (Heisenberg equation). (2.7)

The corresponding state vector Ψ
(N)
H (t0) = Û (t0, t)Ψ

(N)
S (t) remains constant (t0

gives only a reference time), and any operator that commutes with the Hamiltonian
is a constant of motion, as is obvious from Eq. (2.7).

Using the Heisenberg picture, the creation and annihilation operators in Eqs. (2.1)
to (2.3) become explicitly time-dependent, i.e., we replace f̂i → f̂i,H(t). The anti-
commutation relations of Eq. (2.2) then remain valid in the equal-time limit.

Furthermore, many situations require to properly define the initial state at the
reference time t0. In equilibrium, this may be an eigenstate of the system (for a pure
quantum state) or a mixture of eigenstates defined through the statistical operator
ρ̂, cf. Appendix A. For an interacting many-body system, there are basically two
different ways to account for stationary (generally correlated) initial states:

(i) through an adiabatic switch-on of the interaction [59, 65–67], where the system
passes through a sequence of intermediate eigenstates, or

(ii) by starting from a (correlated) many-body state formulated in the picture of the
grand canonical ensemble (GCE), e.g., [67, 68].

Of course, other approaches exist which a priori define (non-)correlated nonequi-
librium initial states, see, e.g., Refs. [69–71] and references therein.

In this article, we mainly follow approach (ii), because the mathematical meth-
ods behind nonequilibrium Green’s functions are most comprehensively developed
along this line. However, strategy (i) is not irrelevant, and we will later emphasize
its significance when using the generalized Kadanoff-Baym ansatz (GKBA), see
Sect. 2.4.2.

2.1.1 Keldysh Contour

From now on, we suppose that the quantum many-body system of Eq. (2.1)
[system (a)] exchanges particles and energy with a reservoir at a temperature

6In the interaction (or Dirac) picture (I), we deal with a representation intermediate between S and

H, where usually the state vector Ψ
(N)
I carries the time dependence of some time-independent part

Ĥ0 of the full Hamiltonian Ĥ (t).
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Fig. 2.1 Grand canonical ensemble (GCE) with inverse temperature β = 1/(kBT ) and chemical
potential μ. Whereas system (b) denotes the heat and particle reservoir, system (a) is the basic
(open) system under investigation. In general, particles (black dots) and energy can be transferred
between (a) and (b). Further, w(2) denotes the two-body interaction between identical particles
(here, fermions) with kinetic energy t (1), and v(1) refers to the presence of a time-dependent local
potential in (a), cf. Hamiltonian (2.1)

T = (kBβ)−1 [system (b)]. Physically, this matter of fact is described by the grand
canonical ensemble (GCE), see Fig. 2.1, whereby the exact state of the overall sys-
tem is generally not known, and one has to resort to a mixed state (ensemble) de-
scription.

In the GCE, we can evaluate time-dependent averages of an observable Â ac-
cording to7 (the system is in equilibrium for t ≤ t0),

〈Â〉(t) = 1

Z0
Tr
{

e−β(Ĥ (t)−μN̂)ÂS
}

, (2.8)

where Z0 = Tr {e−β(Ĥ (t0)−μN̂)} is the partition function, μ denotes the one-particle
chemical potential and N̂ is the particle number operator. The trace is defined as in
Appendix A.4, summing over a complete set of states in the Fock space.

Working out that, for the time-evolution operator of Eq. (2.5), it is

Û (t0 − iβ, t0) = e−β(Ĥ (t0)−μN̂), i.e., the initial statistical operator acts like an evolu-
tion operator in imaginary time, we can rewrite Eq. (2.8) using the cyclic invariance
of the trace as8,

〈Â〉(t) = 1

Z0
Tr
{

Û (t0 − iβ, t0)Û (t0, t)ÂSÛ (t, t0)
}

= 1

Z0
Tr
{

Û (t0 − iβ, t0)ÂH
}

. (2.9)

From right to left, the first line indicates a successive time evolution of the system
along a contour: First, it evolves along the real time axis from time t0 to time t

(where the operator acts) and back from t to t0. Second, an additional evolution

7The subscript S in ÂS indicates the Schrödinger picture.
8We emphasize that, with Û(t0 − iβ, t0) = ρ̂(t0), it is the time-independent density operator that
enters in the trace of Eq. (2.9).
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Fig. 2.2 Complex round-trip
Keldysh contour C including
three different branches
denoted (a), (b) and (c). On
C , time t2 is later than t1, and
time t3 is later than t1 and t2,
cf. the arrows

occurs parallel to the imaginary axis from time t0 to time t0 − iβ . Such a complex
time contour is originally due to Keldysh [59], and we refer to it as the contour C .
For illustration of the round-trip propagation path, see Fig. 2.2.

On the Keldysh contour9, we can define a generalized time-ordering opera-
tor T̂C , which works chronologically (antichronologically) on the upper (lower)
branch of the contour and arranges imaginary times which originate from the ver-
tical branch behind purely real times. For a contour-ordered product of opera-
tors Â1,H(t1) . . . Ân,H(tn) which commute pairwise at equal times, we then have
(t1, . . . tn ∈ C ),

T̂C
{

Â1,H(t1) . . . Ân,H(tn)
}=
∑

P

θC (tP(1) − tP(2)) . . . θC (tP(n−1) − tP(n))

× ÂP(1),H(tP(1)) . . . ÂP(n),H(tP(n)), (2.10)

where θC (t − t ′) is the contour step function that equals one for t later than t ′ on C
and zero otherwise, cf. the arrows in Fig. 2.2.

We now can refine Eq. (2.9) as follows,

〈Â〉(t) = 1

Z0
Tr

{

T̂C exp

(

− i

�

∫

C
dt̄ Ĥ (t̄ )

)

ÂS|t
}

= 1

Z0
Tr {ÛC ÂS|t } (2.11)

with the generalized time-evolution operator ÛC .
The presence of the Keldysh contour assesses a contour algebra which was de-

scribed in detail by DuBois [72] and Langreth [73] and which culminates in the
application of the Langreth-Wilkins rules [74], see Table 2.1.

2.1.2 One-Particle Nonequilibrium Green’s Function

The contour-ordered, one-particle nonequilibrium Green’s function (1pNEGF) is
defined according to (for simplicity, we drop subscripts H and S which indicate the
Heisenberg or Schrödinger picture),

9Sometimes, C is called Schwinger-Keldysh contour.
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Fig. 2.3 The one-particle
nonequilibrium Green’s
functions (correlation
functions) G(1),> and G(1),<

correspond, respectively, to
the propagation of a
“particle” and a “hole”. The
propagation paths are
indicated by curved arrows

G
(1)
ij

(

t, t ′
)= − i

�

〈

T̂C f̂i (t)f̂
†
j

(

t ′
)〉

= θC
(

t − t ′
)

G
(1),>
ij

(

t, t ′
)+ θC

(

t ′ − t
)

G
(1),<
ij

(

t, t ′
)

, (2.12)

where the times t and t ′ are located on the Keldysh contour C , and the lesser and
greater components10 are,

G
(1),>
ij

(

t, t ′
) = − i

�

〈

f̂i (t)f̂
†
j

(

t ′
)〉

,

G
(1),<
ij

(

t, t ′
) = i

�

〈

f̂
†
j

(

t ′
)

f̂i (t)
〉

.

(2.13)

In the GCE, the ensemble average 〈. . .〉 is evaluated as in Eq. (2.11), i.e.,

G
(1)
ij

(

t, t ′
)= − i

�Z0
Tr
{

ÛC f̂i |t f̂ †
j |t ′
}

. (2.14)

Here, we restrict ourselves to fermions11 and, furthermore, do not consider “anoma-
lous” Green’s functions12 that are relevant for quantum coherence phenomena such
as superfluidity or superconductivity [75–77].

In a quasi-particle picture, the greater component of the 1pNEGF describes the
propagation of an added particle whereas the lesser component describes the prop-
agation of a removed particle (“hole”), for illustration see Fig. 2.3. Moreover, the
1pNEGF is directly connected to all one-particle observables, as in the equal-time
limit, we recover the 1pRDM (t real and ε > 0),

ρ1,ij (t) = −i�G(1),<
ij (t, t) = −i�G(1)

ij

(

t, t+
)= −i� lim

ε→0
G

(1)
ij (t, t + ε). (2.15)

As an illustration, consider the coordinate representation: With G(1)(rt, r′t ′) =
∑

ij φ∗
i (r)φj (r′)G(1)

ij (t, t ′) for (spin) orbitals |i〉 = φi(r), the total spatial and cur-
rent density are given by (for fermions of mass m and no external vector potential
applied),

10The greater and lesser components are also called correlation functions.
11For bosons, G(1),< carries the opposite spin.
12Containing two annihilation or two creation operators.
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ρ1(r, t) = −i�G(1)
(

rt, rt+
)

,

j1(r, t) = −i�

{∇r − ∇r′

2mi
G(1)
(

rt, rt ′
)
}

t ′=t+
.

(2.16)

Furthermore, we define the spectral function,

A1,ij

(

t, t ′
)= i�

{

G
(1),>
ij

(

t, t ′
)− G

(1),<
ij

(

t, t ′
)}

, (2.17)

which gives access to the local density of states and the addition, respectively, re-
moval energies.

Instead of the prevailing definition (2.12), also matrix representations of the
1pNEGF have emerged. Useful 2 by 2 matrix notations cover only real-time ar-
guments and are known from Keldysh theory. Thereby, different representations
are connected by a linear transformation called “Keldysh rotation”, see Ref. [74].
A common representation is (omitting the arguments),

G(1)
2×2 =

[

G(1),R G(1),<

0 G(1),A

]

, (2.18)

where the retarded (R) and advanced (A) Green’s functions are given by,

G(1),R/A(t, t ′
)= ±θC

(±[t − t ′
]){

G(1),>
(

t, t ′
)− G(1),<

(

t, t ′
)}

. (2.19)

Allowing also for imaginary time arguments, we can extend Eq. (2.18) to a 3 by
3 matrix [78, 79], as there are generally nine possibilities to distribute the arguments
along the three contour branches (a), (b) and (c) of Fig. 2.2:

G(1)
3×3 =

⎡

⎣

G(1),c G(1),< G(1),
G(1),> G(1),a G(1),
G(1),� G(1),� G(1),M

⎤

⎦ . (2.20)

Here, the causal (c) and anticausal (a) Green’s functions are defined by,

G(1),c/a(t, t ′
)= θC

(±[t − t ′
])

G(1),>
(

t, t ′
)+ θC

(±[t ′ − t
])

G(1),<
(

t, t ′
)

, (2.21)

and G(1),M(t, t ′) denotes the Matsubara Green’s function for which t and t ′ are on
the imaginary track of C . Further, the mixed Green’s function G(1), (respectively,
G(1),�) takes a real time as first (second) argument and an imaginary time as second
(first) argument. As one generally does not distinguish the origin of the real-time
arguments in G(1), and G(1),�, the symbols  (�) are quite intuitive when reading
them from left to right [80].

Note that both matrix representations, (2.18) and (2.20), are overcomplete be-
cause not all components are independent. Regarding the 3 by 3 matrix, either the
four components G(1),M, G(1),�, G(1),< and G(1),> or G(1),M, G(1),�, G(1),c and
G(1),a define a linear independent subset13.

13Provided the system is in a nonequilibrium state. In the case of a 2 by 2 matrix, there are only
two independent components, G(1),> and G(1),<.
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We collect some useful relations14 (t0 real, τ, τ ′ ∈ [−β,0]):

G
(1),>
ij (t, t) − G

(1),<
ij (t, t) = − i

�
δij (at equal times!),

G
(1)
ij

(

t0 − iβ, t ′
) = −G

(1)
ij

(

t0, t
′) (a),

G
(1)
ij (t, t0) = −G

(1)
ij (t, t0 − iβ) (b),

G
(1),M
ij

(

t0 − i0, t0 − i0+) = G
(1),<
ij (t0, t0) (c),

G
(1),M
ij

(

t0 − iτ, t0 − iτ ′) = G
(1),�
ij

(

t0 − i
(

τ − τ ′), t0
)

(d),

G
(1),≷
ij

(

t, t ′
) = −[G(1),≷

ji

(

t ′, t
)]∗

,

G
(1),�
ij

(

t0 − iτ, t ′
) = [G(1),

ji

(

t ′, t0 − i(β − τ)
)]∗

.

(2.22)

In Eq. (2.22)(a) to (d), the system’s Hamiltonian is time independent for times t, t ′ ≤
t0, and we assume a thermodynamic equilibrium with temperature β−1. Further, in
a matrix representation regarding the basis indices i and j , the last two properties
read,

G(1),≷(t, t ′
) = −[G(1),≷(t ′, t

)]†
,

G(1),�(t0 − iτ, t ′
) = [G(1),(t ′, t0 − i(β − τ)

)]†
.

(2.23)

2.2 Equations of Motion

For the derivation of equations of motion for the 1pNEGF, we first consider its time
derivative in terms of the greater and lesser components,

∂

∂t
G

(1)
ij

(

t, t ′
)= δC

(

t − t ′
){

G
(1),>
ij

(

t, t ′
)− G

(1),<
ij

(

t, t ′
)}

+ θC
(

t − t ′
) ∂

∂t
G

(1),>
ij

(

t, t ′
)+ θC

(

t ′ − t
) ∂

∂t
G

(1),<
ij

(

t, t ′
)

. (2.24)

Due to the contour delta function, the difference between G(1),> and G(1),< in the
first line will be evaluated only at equal times which gives rise to a factor − i

�
δij ,

cf. Eq. (2.22). Explicitly writing out the second line yields with Eq. (2.13),

14Properties (a) and (b) are sometimes called Kubo-Martin-Schwinger (KMS) conditions and fol-
low from Eq. (2.14) under the cyclic property of the trace. For bosons, the antiperiodicity turns
into periodicity. In expression (c), the second time argument on the l.h.s. is infinitesimally larger
on C than the first one.
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i�
∂

∂t
G

(1)
ij

(

t, t ′
)

= δC
(

t − t ′
)

δij

+ θC
(

t − t ′
)
〈{

∂

∂t
f̂i(t)

}

f̂
†
j

(

t ′
)
〉

− θC
(

t ′ − t ′
)
〈

f̂
†
j

(

t ′
)
{

∂

∂t
f̂i(t)

}〉

, (2.25)

where the dynamics of the annihilation operators is given by the Heisenberg equa-
tion (cf. Eq. (2.7)),

i�
∂

∂t
f̂i(t) = [f̂i (t), Ĥ (t)

]

−. (2.26)

Taking advantage of the relations in Eq. (A.11) of Appendix A, we readily evaluate
the commutator in Eq. (2.26) as (summation over j ′, k and l is implied),

i�
∂

∂t
f̂i(t) = 〈i|h(1)|k〉f̂k(t) + 〈ij ′|w(2)|kl〉f̂ †

j ′(t)f̂l(t)f̂k(t). (2.27)

It follows15,

i�
∂

∂t
G

(1)
ij

(

t, t ′
)= δC

(

t − t ′
)

δij

− i

�
〈i|h(1)|k〉{θC

(

t − t ′
)〈

f̂k(t)f̂
†
j

(

t ′
)〉− θC

(

t ′ − t
)〈

f̂
†
j

(

t ′
)

f̂k(t)
〉}

− i

�
〈ij ′|w(2)|kl〉{θC

(

t − t ′
)〈

f̂
†
j ′(t)f̂l(t)f̂k(t)f̂

†
j

(

t ′
)〉

− θC
(

t ′ − t
)〈

f̂
†
j

(

t ′
)

f̂
†
j ′(t)f̂l(t)f̂k(t)

〉}

. (2.28)

While in the second term on the r.h.s. we can resubstitute the 1pNEGF G
(1)
kj (t, t ′),

the last term is more complicated involving averages over four operators. In order to
identify these terms with the contour-ordered two-particle nonequilibrium Green’s
function16 (2pNEGF),

G
(2)
ij,kl

(

t, t ′; t̄ , t̄ ′)=
(

− i

�

)2
〈

T̂C f̂i (t)f̂j

(

t ′
)

f̂
†
l

(

t̄ ′
)

f̂
†
k (t̄)
〉

, (2.29)

we introduce the generalized (two-time but instantaneous) two-body interaction,

w(2)
(

t, t ′
)= δC

(

t − t ′
)

w(2), (2.30)

to be evaluated on the contour C . Then, Eq. (2.28) becomes,

i�
∂

∂t
G

(1)
ij

(

t, t ′
)= δC

(

t − t ′
)

δij + 〈i|h(1)|k〉G(1)
kj

(

t, t ′
)

− i

�

∫

C
dt̄ 〈ij ′|w(2)(t − t̄ )|kl〉{θC

(

t − t ′
)〈

f̂
†
j ′(t̄)f̂l(t̄ )f̂k(t)f̂

†
j

(

t ′
)〉

− θC
(

t ′ − t
)〈

f̂
†
j

(

t ′
)

f̂
†
j ′(t̄)f̂l(t̄ )f̂k(t)

〉}

. (2.31)

15Again, the notation implies summation over all repeatedly occurring indices.
16In the language of quasi-particles, the 2pNEGF is a “particle-hole” propagator.
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2.2.1 Keldysh-Kadanoff-Baym Equations

With the action of the time-ordering operator T̂C (recall Eq. (2.10) in Sect. 2.1), we
identify the bracket in the last term of Eq. (2.31) including a prefactor of −�

−2 as the
2pNEGF G

(2)

lk,jj ′(t, t̄ , t ′ t̄+), where t̄+ denotes the limit from above on the contour.
The resulting equation determines the dynamics of the one-particle nonequilibrium
Green’s function with respect to the first time argument t . Starting in Eq. (2.24)
with the time derivative with respect to t ′, we can derive a similar equation for
∂
∂t ′ G

(1)
ij (t, t ′).

Together, these two equations then form the equations of motion for the 1pNEGF,
known as the two-time Keldysh-Kadanoff-Baym equations (KBEs)17 [28]:

{

i�
∂

∂t
δik − 〈i|h(1)(t)|k〉

}

G
(1)
kj

(

t, t ′
)

= δC
(

t − t ′
)

δij − i�
∫

C
dt̄ 〈ij ′|w(2)(t − t̄ )|kl〉G(2)

lk,jj ′
(

t, t̄; t ′, t̄+),

G
(1)
ik

(

t, t ′
)
{

−i�
∂

∂t ′
δkj − 〈k|h(1)

(

t ′
)|j 〉
}

= δC
(

t − t ′
)

δij − i�
∫

C
dt̄ G

(2)

li,kj ′
(

t, t̄; t ′, t̄+)〈kj ′|w(2)
(

t ′ − t̄
)|j l〉.

(2.32)

A few remarks are in order:

(i) The KBEs are a set of coupled (non-Markovian18) integro-differential equa-
tions and are valid for imaginary and real times defined on the round-trip
Keldysh contour C . Note that the second equation in (2.32) is just the adjoint
of the first one with the times interchanged, i.e., t ↔ t ′.

(ii) The boundary (respectively, initial) conditions for the KBEs are given by the
Kubo-Martin-Schwinger (KMS) relations formulated as properties (a) and (b)
in Eq. (2.22), cf. [57, 81]. If the equilibrium Matsubara Green’s function of
the system is known, sufficient KMS conditions are expressions (c) and (d) in
Eq. (2.22).

(iii) The KBEs in the form of Eq. (2.32) are not closed, i.e., they do not uniquely
define the 1pNEGF without further knowledge. Instead, each KBE requires the
2pNEGF which in turn satisfies the Bethe-Salpeter equation, cf. Refs. [82, 83].
Generally, the equation of motion for G(n) (n ≥ 2) requires information about
G(n−1) and G(n+1), cf. Refs. [83, 84]. From this point of view, the KBEs rep-
resent only the first equations of a complete hierarchy of equations of motion
for the NEGFs. This hierarchy is known as the Martin-Schwinger (MS) hierar-
chy [57].

17Summation over j , k and l is implied. For bosons, the contour integrals in the KBEs take a
prefactor of +i�.
18This means they involve a time integral that reflects memory effects.
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(iv) In the special case of equal time arguments, t = t ′, the MS hierarchy reduces
to the BBGKY (Bogolyubov-Born-Green-Kirkwood-Yvon) hierarchy for the
reduced density operators, cf., e.g., Ref. [11]. The special case of the dynamics
of single-time quantities will be studied in Sect. 4.2.3.

In order to transform the KBEs (2.32) into a closed form avoiding the MS hier-
archy, we have to express the 2pNEGF in terms of the 1pNEGF. However, in the
presence of correlations, this can be done only by summing over an infinite num-
ber of contributions. For this reason, we generally have to resort to approximations
when dealing with nonequilibrium Green’s functions. Highly useful expansions are
provided by many-body perturbation theory (MBPT). To give details in this regard
and to cover topics such as “self-consistency” and “conserving approximations” is
the task of Sect. 2.3.

Formally, we can rewrite the contour integral in the KBEs as a convolution and
include all interaction effects into a one-particle self-energy19 (1pSE) Σ(1):

−i�
∫

C
dt̄ 〈ij ′|w(2)(t − t̄ )|kl〉G(2)

lk,jj ′
(

t, t̄; t ′, t̄+) =
∫

C
dt̄ Σ

(1)
ik (t, t̄ )G

(1)
kj

(

t̄ , t ′
)

,

Σ
(1)
ij

(

t, t ′
) = Σ

(1)
ij

[

G(1),w(2)
](

t, t ′
)

.

(2.33)

In the course of this, the self-energy becomes a functional of the 1pNEGF and the
generalized two-body interaction w(2). Often one distinguishes between the regular
(“time-diagonal” or “time-local”) part of the self-energy Σ

(1)
reg (t, t ′) ∝ δC (t − t ′) and

the irregular part Σ
(1)
cor (t, t

′). Whereas for the former the KBEs are trivial to solve
as they become Markovian (the contour integral vanishes), the latter keeps the non-
Markovian structure and accounts for memory effects, i.e., correlations.

Using, e.g., the matrix representation of Eq. (2.18), the KBEs can also be written
in form of a Dyson equation (we drop the label “2 × 2” for the Green’s functions),

G(1) = G(1)
0 + G(1)

0 Σ
(1)
2×2G(1), (2.34)

where G(1)
0 denotes the 1pNEGF of the ideal, non-interacting system. The self-

energy matrix Σ
(1)
2×2 has the same components as G(1) and G(1)

0 in Eq. (2.18) and
acts as integration kernel. Further, the product in Eq. (2.34) involves by definition
the integration over two intermediate time variables. For two functions A and B in
Keldysh space20, it is,

{AB}(t, t ′)=
∫

C
dt̄ A(t, t̄)B

(

t̄ , t ′
)

. (2.35)

To specify the structure of the (collision) integral on the r.h.s. of Eq. (2.33) in
terms of components of the 1pSE and the 1pNEGF, one most easily applies the
Langreth-Wilkins rules. A tabular summary of these can be found in Table 2.1. The
operations indicated by � and ◦ are defined by (x, y ∈ {A,R,>,<, , �}),

19We sum over k.
20I.e., contour-ordered functions A(t, t ′) and B(t, t ′) with t, t ′ ∈ C .
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Table 2.1 Langreth-Wilkins rules for the multiplication and convolution of two contour-ordered
functions A and B. The result C is again a function on the Keldysh space and has the indicated
components. The operations denoted by � and ◦ are defined by Eqs. (2.36) and (2.37)

C(t, t ′) = A(t, t ′)B(t ′, t) C(t, t ′) = ∫C dt̄A(t, t̄)B(t̄, t ′)

CM AMBM AM � BM

C� A�B A� ◦ BA + AM � B�

C AB� AR ◦ B + A � BM

C> A>B< AR ◦ B> + A> ◦ BA + A � B�

C< A<B> AR ◦ B< + A< ◦ BA + A � B�

CR ARB> + A>BA AR ◦ BR

CA AAB< + A<BR AA ◦ BA

{

Ax ◦ By
}(

t, t ′
)=
∫ ∞

t0

dt̄ Ax(t, t̄ )By
(

t̄ , t ′
)

, (2.36)

and,

{

AM � BM
}

(τ ) =
∫ β

0
dτ̄ AM(τ − τ̄ )BM(τ̄ ),

{

AM � B�}(t0 − iτ, t) =
∫ β

0
dτ̄ AM(τ − τ̄ )B�(t0 − iτ̄ , t),

{

A � BM
}

(t, t0 − iτ) =
∫ β

0
dτ̄ A(t, t0 − iτ̄ )BM(τ̄ − τ),

{

A � B�}(t, t ′
) = −i

∫ β

0
dτ̄ A(t, t0 − iτ̄ )B�(t0 − iτ̄ , t ′

)

.

(2.37)

2.2.2 Equilibrium Limit. Dyson Equation

The KBEs (2.32) are valid for all times t and t ′ on the contour C . However, if the
Hamiltonian of the system is time independent (note that this is assumed above for
times t, t ′ ≤ t0), the only independent matrix component of the Green’s function is
G(1),M. As a consequence, the contour reduces to its imaginary track, and the KBEs
(2.32) with closure (2.33) simplify to the Dyson equation for the Matsubara Green’s
function21,

21Summation over k is implied.
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{

i�
∂

∂τ
δik − 〈i|h(1)|k〉

}

G
(1),M
kj (τ ) = δ(τ )δij

+
∫ β

0
dτ̄ Σ

(1),M
ik (τ − τ̄ )G

(1)
kj (τ̄ ), (2.38)

in which we have applied the transformation,

Xij

(

τ − τ ′)= −i�Xij

(

t0 − iτ, t0 − iτ ′), (2.39)

to the 1pNEGF (X = G(1),M) and the 1pSE (X = Σ(1),M). In this notation, the
time difference τ −τ ′ generally ranges from −β to +β , and the equilibrium 1pRDM
is simply,

ρ1,ij = G
(1),M
ij

(

0−). (2.40)

Further, the antiperiodicity properties (a) and (b) of Eq. (2.22) allow us to restrict
the solution of Eq. (2.38) to a half interval, e.g., [−β,0] which includes the reduced
density matrix at the upper interval boundary22.

If we include the regular part of the self-energy,

Σ
(1),M
reg,ij (τ ) = δ(τ )Σ

(1),M
0,ij , (2.41)

in an effectively non-interacting Green’s function23 G
(1),M
0 (τ ), the Dyson equation

attains the form (compare with Eq. (2.34)),

G
(1),M
ij (τ ) = G

(1),M
0,ij (τ ) +

∫ β

0
dτ̄

∫ β

0
d ¯̄τ Σ

(1),K
ik (τ̄ − ¯̄τ)G

(1),M
kj ( ¯̄τ ),

Σ
(1),K
ij (τ ) = Σ

(1),M
ij (τ ) − Σ

(1),M
reg,ij (τ ).

(2.42)

It is important to note that here (aside from w(2)) the self-energy Σ
(1),M
0 is strictly

a functional of the effectively non-interacting Green’s function, whereas Σ(1),M(τ )

depends on the full Green’s function and includes, both, a regular and an irregular
part.

If the effectively non-interacting Green’s function G
(1),M
0 (τ ) is known, Eq. (2.42)

can be solved by iteration starting from setting G(1),M(τ ) = G
(1),M
0 (τ ) on the r.h.s.

Eventually, a self-consistent Matsubara Green’s function is reached. Together with
transformation (2.39) and properties (c) and (d) of Eq. (2.22), this solution serves as
a proper initial condition for the real-time propagation of the 1pNEGF. This means
that, in this case, the many-body system will remain stationary in time as long as
no external field is applied and the same “conserving” approximation is used for the
self-energy, cf. Sect. 2.3.1.

22Sometimes, G(1),M(τ ) is considered on the symmetric interval [− β
2 ,

β
2 ], see, e.g., [85].

23The corresponding Dyson equation is obtained by replacing the one-particle energy 〈i|h(1)|j〉 in

Eq. (2.38) by 〈i|h(1)|j〉 + Σ
(1),M
0,ij and setting the integration kernel to zero. Sometimes, one refers

to G
(1),M
0 as the “undressed” (“bare”) Green’s function whereas the full Green’s function G(1),M

is the “dressed” one.



28 2 Nonequilibrium Green’s Functions

Fig. 2.4 Hartree-Fock: the
simplest conserving
approximation for the
two-particle Green’s function
G

(2)
ij,kl (t1, t2; t ′1, t ′2), cf.

Eq. (2.43). The sign refers to
bosons (+) and fermions (−)

2.3 Many-Body Approximations

One of the key problems in solving the Kadanoff-Baym equations (2.32) as well
as the Dyson equation (2.38) is the fact that basically exact knowledge of the two-
particle Green’s function is required due to the presence of the MS hierarchy, cf.
Sect. 2.2.1, point (iii). Unfortunately, G(2) is in general unknown. Therefore, we
have to perform a truncation of the hierarchy through a many-body approximation
(MBA).

The simplest hierarchy decoupling is achieved in the so-called Hartree-Fock (HF)
approximation,

G
(2)
ij,kl

(

t1, t2; t ′1, t ′2
)≈ G

(1)
ik

(

t1, t
′
1

)

G
(1)
j l

(

t2, t
′
2

)+ G
(1)
il

(

t1, t
′
2

)

G
(1)
jk

(

t2, t
′
1

)

. (2.43)

For plasmas, it leads to a quantum mechanical version of the Vlasov equation [83].
In terms of one-particle propagators (representable by arrows) we can illustrate
Eq. (2.43) as shown in Fig. 2.4.

Inserting the HF approximation for G(2) into the first KBE, we obtain (for
fermions),

{

i�
∂

∂t
δik − 〈i|h(1)(t)|k〉

}

G
(1)
kj

(

t, t ′
)

= δC
(

t − t ′
)

δij − i�
∫

C
dt̄ 〈ij ′|w(2)(t − t̄ )〈kl|{G(1)

lj

(

t, t ′
)

G
(1)

kj ′
(

t̄ , t̄+
)

− G
(1)
il

(

t, t̄+
)

G
(1)
kj

(

t ′, t̄
)}

, (2.44)

where we sum over j ′, k and l. If we express the integral on the r.h.s. in the form of
Eq. (2.33) using a 1pSE, we easily verify that,

Σ
(1),HF
ij

(

t, t ′
)= Σ

(1),H
ij

(

t, t ′
)+ Σ

(1),F
ij

(

t, t ′
)

, (2.45)

with (retaining the generalized two-body interaction),

Σ
(1),H
ij

(

t, t ′
) = −i�δC

(

t − t ′
)
∫

C
dt̄ 〈ij |w(2)(t − t̄ )|kl〉G(1)

kl

(

t̄ , t̄+
)

,

Σ
(1),F
ij

(

t, t ′
) = i�〈il|w(2)

(

t+ − t ′
)|kj 〉G(1)

kl

(

t, t ′
)

.

(2.46)

The first (second) term is the Hartree (Fock) self-energy, whereby the Fock contribu-
tion accounts for exchange effects, i.e., for the Pauli exclusion principle in the case
of fermions. Moreover, as w(2)(t − t ′) involves a contour delta function, we directly
observe that the HF approximation leads to a regular (time-local) self-energy and,
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thus, neglects correlation effects. Improvements of Eq. (2.43) beyond Hartree-Fock
are obtained by vertex corrections, e.g., [86], and will be discussed in the following.
An important necessary criterion for the construction of approximations is that they
retain the symmetries and conservation laws of the original (exact) Hamiltonian.

2.3.1 Requirements for a Conserving Scheme

If we analyze the HF approximation of Eq. (2.43), we realize that the approximate
2pNEGF obeys a specific symmetry: It is invariant under the simultaneous exchange
of the first and the second pair of (spatial and temporal) arguments. Also, we find
that, when applying the HF approximation to the KBEs (2.32), the system’s total en-
ergy, particle number and momentum are preserved24. For this reason, HF is called
a “conserving” approximation. In this regard, we note that the 1pNEGF allows us to
determine the total energy by (we sum over i and j , i.e., take the trace),

〈Ĥ 〉(t) = −i�G(1)
ij

(

t, t+
)〈j |h(1)(t)|i〉 − i�

2

∫

C
dt̄ Σ

(1)
ij (t, t̄ )G

(1)
j i

(

t̄ , t+
)

. (2.47)

The equilibrium limit of this is,

〈Ĥ 〉 = G
(1)M
ij

(

0−)〈j |h(1)|i〉 + 1

2

∫ β

0
dτ Σ

(1),M
ij (−τ)G

(1),M
ji (τ ). (2.48)

In fact, it has been shown by Baym [87] that the symmetry of G(2) in Eq. (2.43)
is directly linked to important conservation laws and the preservation of particle
number. More precisely, an arbitrary MBA is automatically conserving if,

(i) the approximate 1pNEGF simultaneously satisfies the two KBEs in the form of
Eq. (2.32), and

(ii) the approximation for G(2) is in line with the symmetry,

G
(2)
ij,kl

(

t1, t2; t+1 , t+2
)= G

(2)
j i,lk

(

t2, t1; t+2 , t+1
)

. (2.49)

Conditions (i) and (ii) represent important criteria for the development of self-
consistent solutions of the KBEs beyond the HF level. Condition (ii) is simple to
verify if the approximate dependence of G(2) on G(1) is known. On the other hand, a
condition equivalent to (ii) can be formulated for the one-particle self-energy, cf. the
discussion on “Φ-derivable” approximations in the following subsection.

2.3.2 Perturbation Expansions

There exist at least two ways of generating perturbative solutions of the Kadanoff-
Baym equations: Either one can apply an iterative procedure using the integral ver-

24For an analysis of conservation laws, we refer to Ref. [28].



30 2 Nonequilibrium Green’s Functions

sion of the equations of motion for G(1) (Dyson’s equation) or one can directly
apply self-consistent approximations to the self-energy.

First, we will review the iterative procedure. To this end, we start from taking the
functional derivative of the 1pNEGF with respect to the one-particle potential en-
ergy v(1)(t). Working out the derivative of time-ordered products, cf. Appendix B.1,
we can write (omitting spatial and spin degrees of freedom),

δG(1)(t, t ′)
δv(1)(t̄)

= G(1)
(

t, t ′
)

G(1)
(

t̄ , t̄+
)− G(2)

(

t, t̄; t ′ t̄+). (2.50)

This identity allows us to express the 2pNEGF in the Kadanoff-Baym equations in
terms of δG(1)/δv(1) [28]. The first equation of motion then reads25,
{

i�
∂

∂t
− h(1)(t)

}

G(1)
(

t, t ′
)

= δC
(

t − t ′
)− i�

∫

C
dt̄ w(2)(t − t̄ )

{

G(1)
(

t̄ , t̄+
)− δ

δv(1)(t̄ )

}

G(1)
(

t, t ′
)

. (2.51)

Unfortunately, Eq. (2.51) is not suited for a straightforward solution. However, it can
be converted into an integral equation using the non-interacting Green’s function
which obeys,

{

i�
∂

∂t
− h(1)(t)

}

G
(1)
0

(

t, t ′
)= δC

(

t − t ′
)

, (2.52)

and has the inverse26 [G(1)
0 ]−1(t, t ′) = δC (t − t ′){i� ∂

∂t ′ −h(1)(t ′)}. Using Eqs. (2.50)
and (2.52), we obtain,

G(1)
(

t, t ′
)= G

(1)
0

(

t, t ′
)− i�

∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )w(2)(t̄ − ¯̄t )

×
{

G(1)
( ¯̄t , ¯̄t +)+ δ

δv(1)( ¯̄t )

}

G(1)
(

t̄ , t ′
)

, (2.53)

which is a formal solution of Eq. (2.51) and satisfies the KMS conditions.
Equation (2.53) is the starting point for expanding the 1pNEGF in a power series

regarding the interaction w(2). The individual contributions are obtained by itera-
tion. While the zeroth order is just G(1) = G

(1)
0 , the first-order expression follows

from substituting the non-interacting Green’s function on the r.h.s. yielding,

G(1)
(

t, t ′
)= G

(1)
0

(

t, t ′
)− i�

∫

C
dt̄
∫

C
d¯̄t G

(1)
0 (t, t̄)w(2)(t̄ − ¯̄t )

×
{

G
(1)
0

( ¯̄t , ¯̄t +)+ δ

δv(1)( ¯̄t )

}

G
(1)
0

(

t̄ , t ′
)

. (2.54)

25Note, that h(1)(t) = t (1) + v(1)(t).
26The inverse Green’s function is defined as

∫

C dt̄ [G(1)]−1(t, t̄)G(1)(t̄ , t ′) = δC (t − t ′).
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Fig. 2.5 Diagrammatic representation of the first-order iteration result of Eq. (2.56) leading to the
Hartree-Fock (HF) approximation. The (non-)interacting 1pNEGF is indicated by solid (dashed)
arrows. The dotted lines mark the generalized two-body interaction potential w(2)

In contrast to Eq. (2.53), the functional derivative is here simple to evaluate27:

δG
(1)
0 (t, t ′)

δv(1)(t̄)
= G

(1)
0 (t, t̄)G

(1)
0

(

t̄ , t ′
)

. (2.55)

Hence, in the first-order approximation (in w(2)), the KBEs obtain the integral form,

G(1)
(

t, t ′
)= G

(1)
0

(

t, t ′
)− i�

∫

C
dt̄
∫

C
d¯̄t G

(1)
0 (t, t̄)w(2)(t̄ − ¯̄t )

× {G(1)
0

( ¯̄t , ¯̄t +)
G

(1)
0

(

t̄ , t ′
)− G

(1)
0

(

t̄ , ¯̄t +)
G

(1)
0

( ¯̄t , t ′
)}

. (2.56)

Comparing the last part of the integrand in Eq. (2.56) to Eq. (2.44), we find that the
solution of first order is just the HF approximation expanded to first order in the
interaction, cf. Fig. 2.5. Substituting G(1) for G

(1)
0 in the brackets leads to the full

HF approximation.
In order to generate higher-order contributions, we reinsert Eq. (2.56) into the

initial equation (2.53) and replace the derivative with respect to v(1) again by
Eq. (2.55). Doing so, most of the terms in second order just originate from iter-
ating the Hartree-Fock equation. The additional ones are counted among the lowest-
order terms of a many-body approximation beyond Hartree-Fock (the second Born
approximation). We note that the exact 1pNEGF follows from accounting for all
topologically distinct connected diagrams, for a discussion see, e.g., Ref. [28].

Often, only summations of infinite classes of terms have reasonable convergence
properties. Therefore, an expansion of G(1) in powers of w(2) and G

(1)
0 is not really

practical. To overcome this bottleneck, it is a great advantage, that sums of infinite
classes are equivalently obtained by expanding the 1pSE in terms of w(2) and the
full, interacting 1pNEGF. Such an approach leads to a self-consistent approximation
and, potentially, is conserving (compare with Sect. 2.3.1).

The starting points are the following equations for the 1pSE and the derivative
δG(1)/δv(1) of Eq. (2.50), which generate higher-order approximations by iterative
use28:

27The result follows from evaluating δ

δv(1)( ¯̄t )

∫

C dt̄ [G(1)
0 ]−1(t, t̄)G

(1)
0 (t̄ , t ′) = 0 under the product

rule, multiplying by G
(1)
0 from the left, integrating over a second time variable and using the defi-

nition of the inverse [G(1)
0 ]−1 as defined below Eq. (2.52).

28For the derivations, see Appendix B.2 and Refs. [88, 89].
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Σ(1)
(

t, t ′
)= i�w(2)

(

t+ − t ′
)

G(1)
(

t, t ′
)

− i�δC
(

t − t ′
)
∫

C
dt̄ w(2)(t − t̄ )G(1)

(

t̄ , t̄+
)

+ i�
∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )w(2)

(

t+ − ¯̄t )δΣ
(1)(t̄ , t ′)

δv(1)( ¯̄t )
, (2.57)

δG(1)(t, t ′)
δv(1)(t̄)

= G(1)(t, t̄ )G(1)
(

t̄ , t ′
)

+
∫

C
dt1

∫

C
dt2 G(1)(t, t1)

δΣ(1)(t1, t2)

δv(1)(t̄)
G(1)
(

t2, t
′). (2.58)

Neglecting the derivative δΣ(1)/δv(1) on the r.h.s., we arrive again at the HF ap-
proximation for the self-energy, i.e., we get Σ(1),HF which is regular and of first
order in the interaction, compare with Eqs. (2.45) and (2.46).

The first iteration of Eq. (2.57) yields [88, 89],

Σ(1)
(

t, t ′
)= Σ(1),HF + i�

∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )w(2)

(

t+ − ¯̄t )

× δ

δv(1)( ¯̄t )

{

Σ(1),HF(t̄ , t ′
)

+ i�
∫

C
dt1

∫

C
dt2 G(1)(t̄ , t1)w

(2)
(

t̄+, t2
)δΣ(1)(t1, t

′)
δv(1)(t2)

}

, (2.59)

where the derivative δΣ(1),HF/δv(1) evaluates with Eq. (2.46) and Eq. (2.58) to,

δΣ(1),HF(t̄ , t ′)
δv(1)(¯̄t) = i�

δG(1)(t̄ , t ′)
δv(1)( ¯̄t )

w(2)
(

t̄+, t ′
)

− i�
∫

C
dt1 w(2)

(

t ′, t1
)δG(1)(t1, t

+
1 )

δv(1)( ¯̄t )

= i�G(1)(t̄ , ¯̄t )G(1)
(¯̄t, t ′)w(2)

(

t̄+ − ¯̄t )

− i�δC
(

t̄ − t ′
)
∫

C
dt1 w(2)

(

t ′ − t1
)

G(1)(t1,
¯̄t )G(1)

( ¯̄t , t+1
)

+ (i�) × terms

{

w(2),G(1),
δΣ(1)

δv(1)

}

. (2.60)

Inserting Eq. (2.59) in Eq. (2.60), we obtain the result,

Σ(1)
(

t, t ′
)= Σ(1),2B(t, t ′

)+ (i�)2 × terms

{

w(2),G(1),
δΣ(1)

δv(1)

}

,

where we have introduced the second Born (2B) self-energy as,

Σ(1),2B(t, t ′
)− Σ(1),HF(t, t ′

)

= (i�)2
∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )w(2)

(

t+ − ¯̄t )G(1)(t̄ , ¯̄t )G(1)
( ¯̄t , t ′

)

w(2)
(

t̄+ − t ′
)

− (i�)2
∫

C
dt̄
∫

C
d¯̄t G(1)

(

t, t ′
)

w(2)
(

t+ − t̄
)

w(2)
(

t ′ − ¯̄t )G(1)( ¯̄t , t̄ )G(1)
(

t̄ , ¯̄t +)
.

(2.61)
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Fig. 2.6 Diagrammatic representation of the second Born self-energy Σ(1),2B(t, t ′) including
terms of first and second order in w(2). The first two diagrams refer to the Hartree and the Fock
(exchange) contribution, cf. Fig. 2.5

The many-body approximation (2.61) is known as the 2B approximation and is the
simplest one that accounts for correlations. Diagrammatically, it is shown in Fig. 2.6.
In the numerical results presented below, we will restrict ourselves to the 2B approx-
imation. We note for completeness that other familiar, more advanced approxima-
tions for the one-particle self-energy such as the GW or T-matrix approximation
(TM) include higher-order terms obtained in the subsequent iteration(s).

Concerning the derivation above, the question remains whether the obtained 2B
self-energy leads to a conserving scheme, i.e., aside from the HF part which has
already been discussed earlier. Interestingly, it turns out that 2B is indeed fully
conserving. This is due to the fact that Σ(1),2B can be derived from a generating
thermodynamic potential Φ [90]. In general, a conserving self-energy is obtained
by removing propagator lines in all possible ways in the diagrammatic power series
expansion of the Luttinger-Ward functional (LWF) Φ = ln〈SC 〉, i.e., calculating,

Σ(1)
(

t, t ′
)= δΦ[G(1),w(2)]

δG(1)(t ′, t)
. (2.62)

Here, in the LWF, SC means the generalized S-matrix,

SC = T̂C exp

[

− i

2�

∫

C
dt
∫

C
dt ′ w(2)

(

t − t ′
)

f̂ †(t)f̂ †(t ′
)

f̂
(

t ′
)

f̂ (t)

]

. (2.63)

An approximation derived from Eq. (2.62) is often called “Φ-derivable” and fully
satisfies the requirements of a conserving approximation given in Sect. 2.3.1. For
details and examples on how to perform the diagrammatic expansion of the LWF
under the relevant Feynman rules before evaluating δΦ/δG(1), the reader is referred
to Ref. [91]. An explicit formula for Φ including prefactors and the topologically
distinct diagrams can be found, e.g., in [92].

2.4 Quantum Kinetic Equations for Single-Time Quantities

In many practical situations, the presence of the over-time-expanding memory ker-
nel (i.e., the retardation) in the KBEs inhibits a successful two-time propagation of
the 1pNEGF or limits it to a certain maximum time. Only for “increasingly smooth”
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kernels29 efficient solvers exist that do not rely a priori on massive parallelization,
e.g., Ref. [93]. On the other hand, much information about the considered quantum
many-body system is already contained in the 1pRDM ρ1(t), which is a single-time
quantity. Therefore, it is reasonable to ask the question of whether it is possible to
derive quantum kinetic equations which are based solely on one time variable.

Mathematically, this poses the question of how to reconstruct two-time quanti-
ties in the KBEs from single-time (or time-diagonal) ones. In this section, we review
such a reconstruction scheme based on the early works of Lipavský et al., Ref. [23].
It demonstrates that there indeed exists an exact relation between the two-time cor-
relation functions and the 1pRDM (or phase-space distribution function). As a direct
implication, the reconstruction theorem will lead over to the generalized Kadanoff-
Baym ansatz (GKBA) which generates the time-diagonal limit of the KBEs though
requiring further approximations. Conceptually, the GKBA paves the way for rig-
orously transforming the KBEs into familiar equations of motion for the Wigner
distribution function such as the Boltzmann, Landau or Balescu-Lenard equations,
e.g., Ref. [94]. These equations are accurate for slowly varying disturbances and
“simple” transport processes. But non-Markovian extensions of these single-time
quantum kinetic equations exist as well, see, e.g., [11, 95, 96], and can be derived
applying the GKBA.

2.4.1 The Reconstruction Problem for the One-Particle Green’s
Function

The reconstruction scheme for G(1),≷(t, t ′) (at t �= t ′) as introduced in the original
publication (see Ref. [23]) is somewhat subtle, and also reviews of the same au-
thors (see, e.g., Refs. [24–26]) include some nested elaborations. For this reason,
we present a detailed derivation below which hopefully will be more clear to the
reader. For simplicity, we again drop any indices that refer to spin or spatial degrees
of freedom. Also, we focus on the lesser matrix component of the Green’s function.
The reconstruction of the greater component is carried out in the same manner.

First of all, we define two auxiliary functions,

G
(1),<
R

(

t, t ′
) = θC

(

t − t ′
)

G(1),<
(

t, t ′
)

,

G
(1),<
A

(

t, t ′
) = −θC

(

t ′ − t
)

G(1),<
(

t, t ′
)

,
(2.64)

which must not be confused with the usual retarded and advanced Green’s func-
tions and allow us to recover the full lesser correlation function from G(1),<(t, t ′) =
G

(1),<
R (t, t ′) − G

(1),<
A (t, t ′). In particular, [G(1),<

R (t, t ′)]† = G
(1),<
A (t ′, t). Second,

we evaluate the time derivative,

29Evoked by the time dependence of the 1pNEGF and (or) the 1pSE.
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i�
∂

∂t
G

(1),<
R

(

t, t ′
)= i�δC

(

t − t ′
)

G(1),<
(

t, t ′
)

+ i�θC
(

t − t ′
) ∂

∂t
G(1),<

(

t, t ′
)

. (2.65)

Third, we summarize some important relations for the inverse of the retarded, ad-
vanced and non-interacting Green’s functions (note that the short-hand notation
AB|(t,t ′) includes the contour integral

∫

C dt̄ A(t, t̄)B(t̄ , t ′)),
[

G(1),R/A
]−1(

t, t ′
) = [G(1)

0

]−1(
t, t ′
)− Σ(1),R/A

(

t, t ′
)

,

[

G
(1)
0

]−1
G

(1),≷
0

∣
∣
(t,t ′) = G

(1),≷
0

[

G
(1)
0

]−1∣∣
(t,t ′) = 0,

[

G(1),R
]−1

G(1),≷∣∣
(t,t ′) = Σ(1),≷G(1),A

∣
∣
(t,t ′).

(2.66)

Our goal is now to express the two-time functions of Eq. (2.64) in terms of the
density matrix. We treat both expressions separately (comments on notations and
transformations made are given below Eq. (2.67) and Eq. (2.68)):

(i) For G
(1),<
R , we consider,
[

G(1),R]−1
G

(1),<
R

∣
∣
(t,t ′)

= {[G(1)
0

]−1 − Σ(1),R}G
(1),<
R

∣
∣
(t,t ′)

(a)= i�δC
(

t − t ′
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC

(

t̄ − t ′
)[

G
(1)
0

]−1
(t, t̄)G(1),<

(

t̄ , t ′
)

− Σ(1),RG
(1),<
R

∣
∣
(t,t ′)

(b)= i�δC
(

t − t ′
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC

(

t̄ − t ′
)[

G(1),R]−1
(t, t̄)G(1),<

(

t̄ , t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC

(

t̄ − t ′
)

Σ(1),R(t, t̄)G(1),<
(

t̄ , t ′
)

− Σ(1),RG
(1),<
R

∣
∣
(t,t ′)

(c)= i�δC
(

t − t ′
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ Σ(1),<(t, t̄)G(1),A(t̄ , t ′

)

− θC
(

t − t ′
)
∫

C
dt̄ θC

(

t ′ − t̄
)[

G(1),R]−1
(t, t̄)G(1),<

(

t̄ , t ′
)

(d)= i�δC
(

t − t ′
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC

(

t ′ − t̄
)

Σ(1),<(t, t̄ )G(1),A(t̄ , t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC

(

t ′ − t̄
)

Σ(1),R(t, t̄)G(1),<
(

t̄ , t ′
)

. (2.67)
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The transformations carried out in Eq. (2.67) are as follows:
(a) This equality is obtained by using the definition of the inverse Green’s func-

tion [G(1)
0 ]−1(t, t ′) = δC (t − t ′){i� ∂

∂t ′ − h(1)(t ′)} together with Eq. (2.65).

(b) Here, we reinsert the expression for [G(1)
0 ]−1 in terms of the retarded

Green’s function and the retarded self-energy (first line of Eq. (2.66)). By
definition, the last two terms involving Σ(1),R on the r.h.s. are equal and
cancel.

(c) Use the third identity in Eq. (2.66). The last term with negative sign corrects
for the presence of the step function.

(d) This is the result of again writing out the inverse [G(1),R]−1 and noting that
∫

C dt̄ θC (t ′ − t̄ )[G(1)
0 ]−1(t, t̄ )G(1),<(t̄ , t ′) evaluates to zero (cf. Eq. (2.66)).

The inclusion of the step function into the second line is consistent with the
definition of the advanced Green’s function, see Eq. (2.19).

(ii) For G
(1),<
A , we consider,

G
(1),<
A

[

G(1),A]−1|(t,t ′)
(*)= {[G(1)

0

]−1 − Σ(1),A}†[
G

(1),<
A

]†∣
∣
†
(t ′,t)

(a)= i�δC
(

t ′ − t
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC (t̄ − t)

[

G
(1)
0

]−1(
t ′, t̄
)

G(1),<(t̄ , t)

∣
∣
∣
∣

†

− Σ(1),RG
(1),<
R

∣
∣
†
(t,t ′)

(b)= i�δC
(

t ′ − t
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ θC (t̄ − t)

[

G(1),R]−1(
t ′, t̄
)

G(1),<(t̄ , t)

∣
∣
∣
∣

†

+ θC
(

t − t ′
)
∫

C
dt̄ θC (t̄ − t)Σ(1),R(t ′, t̄

)

G(1),<(t̄ , t)

∣
∣
∣
∣

†

− Σ(1),RG
(1),<
R

∣
∣
†
(t,t ′)

(c)= i�δC
(

t ′ − t
)

G(1),<
(

t, t ′
)

+ θC
(

t − t ′
)
∫

C
dt̄ Σ(1),<

(

t ′, t̄
)

G(1),A(t̄ , t)

∣
∣
∣
∣

†

− θC
(

t − t ′
)
∫

C
dt̄ θC (t − t̄ )

[

G(1),R]−1(
t ′, t̄
)

G(1),<(t̄ , t)

∣
∣
∣
∣

†

(d)= i�δC
(

t ′ − t
)

G(1),<
(

t, t ′
)

− θC
(

t − t ′
)
∫

C
dt̄ θC (t − t̄ )G(1),R(t, t̄)Σ(1),<

(

t̄ , t ′
)

− θC
(

t − t ′
)
∫

C
dt̄ θC (t − t̄ )G(1),<(t, t̄)Σ(1),A(t̄ , t ′

)

. (2.68)
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Comments on the transformations:
(*) Here, the notation AB|(t ′,t) is to be understood as

∫

C dt̄ A(t̄ , t ′)B(t, t̄ ),

and AB|†
(t ′,t) denotes

∫

C dt̄ B†(t ′, t̄)A†(t̄ , t).

(a) We use that the adjoint of [G(1)
0 ]−1(t, t ′) is given by [G(1)

0 ]−1(t ′, t) and
apply Eqs. (2.64) and (2.65). Note, that [Σ(1),A(t, t ′)]† = Σ(1),R(t ′, t).

(b) As in (i), we substitute the expression for the inverse of the non-
interacting Green’s function. Again, the last two terms on the r.h.s. can-
cel.

(c), (d) These equalities follow in the same way as points (c) and (d) in
Eq. (2.67).

Equations (2.67) and (2.68) almost complete the reconstruction. As the final step,
we multiply Eq. (2.67) from the left by G(1),R and Eq. (2.68) from the right by
G(1),A, integrate over another intermediate time coordinate and identify the 1pRDM
ρ1(t) = −i�G(1),<(t, t). We finally obtain,

G(1),<
(

t, t ′
)= −G(1),R(t, t ′

)

ρ1
(

t ′
)

+
∫ t

t ′
dt̄

∫ t ′

t0

d ¯̄t G(1),R(t, t̄ )Σ(1),<(t̄ , ¯̄t )G(1),A( ¯̄t , t ′
)

+
∫ t

t ′
dt̄

∫ t ′

t0

d ¯̄t G(1),R(t, t̄ )Σ(1),R(t̄ , ¯̄t )G(1),<
( ¯̄t , t ′

)

+ ρ1(t)G
(1),A(t, t ′

)

+
∫ t

t ′
dt̄

∫ t ′

t0

d ¯̄t G(1),R(t, t̄ )Σ(1),<(t̄ , ¯̄t )G(1),A( ¯̄t , t ′
)

+
∫ t

t ′
dt̄

∫ t ′

t0

d ¯̄t G(1),<(t, t̄)Σ(1),A(t̄ , ¯̄t )G(1),A( ¯̄t , t ′
)

. (2.69)

A very similar equation is valid for the greater component of the 1pNEGF. The only
difference is that we cannot identify the 1pRDM in the non-integral terms (compare
with Eq. (2.70)).

2.4.2 The Generalized Kadanoff-Baym Ansatz

The reconstruction (2.69) is exact as long as the exact advanced and retarded prop-
agators are used. However, it has still the form of an integral equation the iterative
solution of which is complicated. A simple approximation is to retain only the non-
integral terms. This procedure is known as the generalized Kadanoff-Baym ansatz30

(GKBA) [23]:

30Sometimes, it is also called Lipavský ansatz, e.g., [11].
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G(1),≷(t, t ′
)= −G(1),R(t, t ′

)

ρ
≷
1

(

t ′
)+ ρ

≷
1 (t)G(1),A(t, t ′

)

= i

�
A
(

t, t ′
){

θC
(

t − t ′
)

ρ≷(t ′
)+ θC

(

t ′ − t
)

ρ≷(t)
}

, (2.70)

where,

ρ
≷
1 (t) = −i�G(1),≷(t, t), (2.71)

and A(t, t ′) denotes the spectral function of Eq. (2.17) [69]. In the limit of equal
times, the GKBA is an identity for the lesser and greater correlation function31,
which automatically implies particle number conservation. For other times t and t ′,
the correlation functions explicitly depend on the retarded and advanced propaga-
tors. These have to be specified when making practical use of the ansatz as they
are again functions of two time variables and, hence, cannot be treated on the same
approximation level of MBPT.

In contrast to the common (or original) Kadanoff-Baym ansatz, e.g., [24], where
one postulates,

G(1),<
(

t, t ′
)= f

(
t + t ′

2

)
{

G(1),A(t, t ′
)− G(1),R(t, t ′

)}

, (2.72)

with f being the Wigner (distribution) function [28], Eq. (2.70) maintains a causal
time structure. It is this causal structure of the GKBA which ensures the conserva-
tion of total energy, momentum and density whenever a conserving approximation is
used for the self-energy and which allows for applications beyond the quasi-particle
picture. Moreover, the GKBA is better suited for dealing with temporally and (or)
spatially fast varying perturbations than Eq. (2.72). Details on the implementation
of the GKBA, particularly when treating the retarded and advanced propagators on
the HF level, are compiled in Sect. 4.2.3.

Applications of the GKBA to spatially homogeneous systems can be found in
various fields and include the numerical treatment of ultrafast carrier relaxation in
the dense electron gas and (laser) plasmas [63, 97, 98], the study of quantum trans-
port phenomena [61, 99] and quantum diffusion [100]. In this respect, it is often used
to connect different time scales studying the crossover from the transient regime to
the long-time behavior [101]. Tests of the GKBA against full two-time calculations
have been performed in Refs. [97, 102, 103]. In the presence of phonons and laser
excitations, the GKBA has been applied to semiconductor electron-hole plasmas in
Refs. [104, 105], and to dynamical screening effects of carrier-phonon and carrier-
carrier interactions in [106]. For extensions to electrons in quantum dots and wells,
see Refs. [107–110]. In addition, the GKBA is discussed in the context of (im-
proved) non-Lorentzian spectral functions [69], and a gauge-invariant formulation
of the GKBA can be found in [98] and is used in Refs. [111, 112] for dynamical
screening and harmonics generation in dense laser plasmas. An extension of the
GKBA to spatially inhomogeneous finite systems has been presented in Ref. [113]
and will be discussed in more detail in Sect. 4.2.3.

31This is easily verified as the integral in Eq. (2.69) vanishes in that case.
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Chapter 3
Representations of the Nonequilibrium Green’s
Function

In this chapter, we are approaching the numerical solution of the Kadanoff-
Baym equations which, in general, means to solve a large set of coupled integro-
differential equations. First numerical solutions for homogeneous systems have been
obtained by Danielewicz [67], Köhler [114] and Schäfer [115, 116].

In contrast to homogeneous quantum many-body systems, where the extent of
the memory kernel in the KBEs is numerically not critical, it becomes a limiting
factor for full two-time NEGF calculations on inhomogeneous systems. Here, the
memory kernel is often not very smooth1 leading to large storage requirements and
allowing for short propagation times only. In response to this fact, which is dis-
cussed in greater detail in Sect. 3.1, the question arises how an efficient treatment
of non-temporal, i.e., particularly spatial degrees of freedom in the 1pNEGF can be
achieved.

An answer to this question leads over to the decision of using either a grid or a
basis representation of the nonequilibrium Green’s function (cf. Sect. 3.2). Eventu-
ally, also a hybrid approach can be preferable. A specific example in this direction is
given in Sect. 3.3 based on the finite element-discrete variable representation (FE-
DVR). Respective applications on model systems can be found in Chap. 6.

3.1 Numerical Resources

3.1.1 Homogeneous Systems. A Brief Outline

In comparison to inhomogeneous quantum many-body systems, the NEGF descrip-
tion of homogeneous systems, such as nuclear matter, correlated electron gases,
(dense) plasmas or interacting charge carriers in semiconductors, is generally sim-
pler. This is due to the fact that the 1pNEGF is a function of only a single space or

1This means, that the Green’s function (or self-energy) does not decay sufficiently fast when “look-
ing” back into the past from the current time.

K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to
Inhomogeneous Systems, Lecture Notes in Physics 867,
DOI 10.1007/978-3-642-35082-5_3, © Springer-Verlag Berlin Heidelberg 2013
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momentum coordinate, i.e., G
(1)
ij (t, t ′) of Eq. (2.12) is replaced by a nonequilibrium

Green’s function which is diagonal with respect to i and j . In momentum represen-
tation, we write G(1)(p, t, t ′), and the KBEs take the form (m indicates the electron
mass),

{

i�
∂

∂t
− p2

2m

}

G(1)
(

p, t, t ′
)=
∫

C
dt̄ Σ(1)(p, t, t̄ )G(1)

(

p, t̄ , t ′
)

,

and the adjoint Eq. with t ↔ t ′.
(3.1)

If, further, the system under investigation is fully isotropic due to cylindrical
(spherical) symmetry in 2D (3D), the 1pNEGF only depends on the modulus k = |k|
of the wave vector (p = �k). For this reason, the problem becomes essentially one-
dimensional2, and we can discretize the wave number k according to ki = iΔk

(i = 0,1,2, . . . , imax) allowing for a maximum momentum pmax = imax�Δk. Com-
putationally, pmax is limited by the available memory capacities. In the case of full
two-time calculations, typical discretizations account for about 32 to 64 points in
k-space, compare with Refs. [117, 118]. If we take 64 k-points and propagate 1000
time steps in, both, t- and t ′-direction, the required memory comprises,

10002 · 64 · 16 bytes ≈ 1 Gigabyte, (3.2)

for the storage of the correlation functions3.
For homogeneous systems, the integration of the KBEs (3.1) is usually achieved

by Runge-Kutta methods4. Concerning the computation of irregular parts of the
self-energy, it is reported in the work of Köhler et al. (Ref. [117]) that the use of
a (2D) 3D Cartesian fast Fourier transform is highly efficient to perform the inter-
mediate momentum integrations. This allows one to effectively study also systems
non-isotropic in p-space and investigate, e.g., ultrafast momentum orientation re-
laxation processes [119]. For a detailed overview on the numerics, see Refs. [114]
and [118]. We emphasize, that especially Ref. [118] includes many comprehensive
visualizations of the real and imaginary part of the two-time 1pNEGF G(1)(p, t, t ′)
and of the spectral function A(p, t, t ′) under various nonequilibrium conditions.

To give a specific example let us consider an interacting electron gas or, in
other words, a one-component electron plasma with a homogeneous positive back-
ground. Such a model is of fundamental relevance in plasma [83] and semiconductor
physics [61]. For a GaAs system, cf. Refs. [118, 120], Fig. 3.1 shows the temporal
evolution of the momentum distribution f (k, t) = −i�G(1)(�k, t, t) as function of
the wave number k when we start propagating the 1pNEGF from a highly nonequi-
librium initial state, e.g., created by an external laser field. In the case shown, the
initial state is ideal, i.e., it corresponds to the non-interacting electron gas. Following
the time evolution, we observe that, in the presence of electron-electron interactions,

2Aside from the generic two-time structure.
3Note, that the correlation functions are in general complex. Assuming double precision, we need
16 bytes for a single complex number.
4Potentially, including an adaptive time step size.
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Fig. 3.1 Time-evolution of the distribution function f (k, t) of an initially non-correlated electron
gas in GaAs in 2B approximation (density: n = 1018 cm−3, temperature: T = 290 K). The initial

distribution is Gaussian: f0e−(k−k0)2/σ 2
k with f0 = 0.9, k0 = 3.95a−1

B , σk = 1.06a−1
B and the Bohr

radius aB = 4πεε0�
2/(m∗e2). Figure after Ref. [120]

the initial Gaussian distribution relaxes within a few hundred femtoseconds to a sta-
tionary equilibrium distribution. As the integral over all wave numbers k increases
with time, it is clear that also the kinetic energy of the system increases and hence
the system heats up during equilibration. However, we note that the final distribution
is not a Fermi-distribution but only Fermi-like due to the correlations treated in 2B
approximation. The equilibration and correlation times are proportional to the in-
verse plasma frequency ωpl = (ne2/(εε0m

∗))1/2 where m∗ is the effective electron
mass and ε denotes the material dielectric constant5.

For the short-time dynamics of a many-body system, the proper choice of the
initial condition is essential. In the previous example, where electrons are excited
by a laser pulse into the previously empty conduction band of a semiconductor, it is
reasonable to assume that these electrons are initially uncorrelated. In other cases,
the neglect of initial correlations (IC) may however be a too dramatic simplification.
In general, they must be included in the KBEs. A general non-perturbative approach
to ICs is subject of Refs. [70, 71, 121] and leads to additional collision terms in the
KBEs6 involving an extra self-energy Σ

(1)
in (p, t, t ′) in Eq. (3.1). This concept is valid

for arbitrary equilibrium as well as nonequilibrium initial states. As a consequence,
if the electron gas discussed in Fig. 3.1 would be prepared in an over-correlated
initial state, we would observe the opposite effect, namely, cooling—compare with
Ref. [121]. Moreover, applications to plasma oscillations and the dynamic structure
factor including ICs can be found in Ref. [122].

5In Coulomb systems, the correlation time is typically of the order of τcor ≈ 2π |ωpl|. At weak
coupling, the relaxation time of the Wigner distribution is typically significantly larger, τrel �
τcor [11, 95, 123].
6The resulting equations of motion for the 1pNEGF are sometimes called “generalized” Kadanoff-
Baym equations, e.g., [121, 124].
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Finally, generalizations of Eq. (3.1) are obtained in the context of intra- and
interband Kadanoff-Baym equations which, e.g., describe the electron (or hole)
dynamics in the conduction and the valence band of a semiconductor (see, e.g.,
Refs. [103, 125] and references therein) and extend standard Bloch equation ap-
proaches [61] to a two-time description.

3.1.2 Inhomogeneous Systems. Computer Memory as Limiting
Factor

For spatially inhomogeneous systems, the computational limits—placed by the
memory kernel of the KBEs—are reached much sooner, i.e., at comparably smaller
grid or basis sizes than for homogeneous systems. This is due to the quadratic scal-
ing of the effort regarding spin and (or) spatial coordinates. Whereas for homoge-
neous systems, the 1pNEGF G

(1)
ij (t, t ′) is diagonal (∝ δij ), it is generally not for

inhomogeneous systems. On top of that, finite and, especially, confined systems of-
ten show strong density modulations the resolution of which requires fine grids or
large basis sizes to ensure adequate convergence of the relevant observables.

For a comparison with Eq. (3.2) of Sect. 3.1.1, let us assume the same number of
1000 time steps for the two-time propagation of the nonequilibrium Green’s func-
tion and a slightly larger spatial discretization which involves 90 spin orbitals. The
resulting memory for the correlation functions is then,

10002 · 902 · 16 bytes ≈ 130 Gigabyte. (3.3)

This means a more than two orders of magnitude larger storage requirement for the
1pNEGF than delineated in Eq. (3.2) and well exemplifies the increased numeri-
cal effort when propagating the Green’s function in real-time for inhomogeneous
quantum systems7.

Anyhow, as the memory requirements of Eq. (3.3) are way beyond the capabil-
ities of typical desktop computers, a serial time-propagation code must be run on
multiprocessor machines or clusters with a shared-memory setup. To make calcula-
tions efficient with respect to runtime8 and average (single or total) processor load,
one, in addition, has to address high-performance computing strategies such as a
proper parallelization, see Sect. 4.2.1.

3.2 Grid versus Basis Representations for Inhomogeneous
Systems

As outlined above, the 1pNEGF has off-diagonal elements for inhomogeneous sys-
tems. The KBEs have, therefore, the form of the multi-band (or multi-level) version

7In the presence of correlations, that is beyond the HF level.
8Note that the runtime itself can be a bottleneck at large memory consumption as we have to
account for matrix instead of scalar multiplications.
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outlined at the end of Sect. 3.1.1, but with the number of “bands” usually being
comparatively large.

If we represent the 1pNEGF on a spatial grid, i.e., replace,

G
(1)
ij

(

t, t ′
)→ G(1)

(

ri t, rj t
′), (3.4)

the required mesh has dimension 2 · d where d is the dimensionality of the con-
sidered problem. Including both time variables, the Green’s function is then a
(2 · d + 2)-dimensional object which is difficult to operate with even in 1D (d = 1).
This becomes obvious, when we compare it to a (one-) two-particle wave func-
tion in 1D (2D) which has a dimension of 3 lacking the additional time variable
present in the nonequilibrium Green’s function. Therefore, although grid methods
are simple to implement numerically and just require low-order, finite-difference
estimates for differential operators, grid-based KBE solvers are essentially more
complex than common codes that propagate wave functions according to the time-
dependent Schrödinger equation. We note that the explicit inclusion of the electron
spin would further increase the complexity by a factor of 4. On top of that, as one
has to account for non-Markovian effects, NEGF calculations must be placed on
the same level as sophisticated Kohn-Sham approaches in time-dependent density
functional theory (TDDFT) which use non-adiabatic exchange-correlation kernels,
e.g., Refs. [126–128].

Of course, there may exist situations where, for example, angular degrees of free-
dom can be integrated out or symmetries can be exploited, such that the problem is
reduced in dimensionality. However, grid methods perform, in general, poorly in
the description of bound (or localized) states which are characteristic for inhomo-
geneous systems. Here, small mesh spacings are indispensable. In this regard, one
rather would prefer an expansion of the 1pNEGF in terms of spatial one-particle
orbitals χi(r) such as eigenfunctions of the confinement potential, i.e.,

G(1)
(

rt, r′t ′
)=
∑

ij

χ∗
i (r)χj

(

r′)G(1)
ij

(

t, t ′
)

. (3.5)

From the computational point of view, it is vital that the basis functions are suffi-
ciently simple such that matrix elements of one- and two-body operators can readily
be computed. In addition, observables should converge as fast as possible with the
basis dimension.

In fact, there exist many approaches to generate an adequate (one-particle) basis
which is quadratically integrable9 and complete. The simplest one is certainly to
diagonalize the time-independent part of the system’s ideal, single-particle Hamil-
tonian. The corresponding eigenfunctions form a well-defined basis and, generally,
allow for a good description of systems that are close to the ground state or equilib-
rium and are weakly interacting. On the other hand, this approach breaks down if
strong external driving forces (leading to fragmentation) are involved and an accu-
rate modeling of continuum (final) states is necessary. Advanced representations can

9Quadratic integrability is required to well-define operator matrix elements.
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be derived from effective Hamiltonians or pseudopotentials and are better adapted
to the many-body problem. These include, e.g., the use of HF and Kohn-Sham or-
bitals [68, 129] which originate from self-consistent field methods [35] and DFT
within the local-density approximation (LDA) [128], respectively.

For simulations of atomic and molecular systems, often a highly localized basis
is chosen if the excitation dynamics is such that ionization processes can be ne-
glected. Such a representation can basically be constructed from any bound, atomic
(molecular) orbitals and their linear combinations. However, the most common ap-
proaches use Gauss- or Slater-type functions (i.e., Gauss- or Slater-type orbitals)
which are centered on the individual atoms. For respective NEGF calculations, we
refer to the work of van Leeuwen, Dahlen and Stan in Refs. [68, 92, 130–132]. More
sophisticated strategies include, e.g., polarized atomic orbitals where functions with
different angular momenta are being mixed [133].

Extensions to periodic and condensed matter systems must conform with Bloch’s
theorem and involve delocalized states (Bloch functions) such as plane waves. How-
ever, also here, it is possible to introduce localized orbitals. A promising approach
is the concept of maximally localized Wannier functions, e.g., Refs. [134, 135] and
references therein, which are the solid-state equivalent of localized molecular or-
bitals. Typically, these follow from LDA band states in the case of not too strong
interactions. Furthermore, a successful strategy is the derivation of effective lattice
Hamiltonians starting from Bloch or Wannier functions, see, e.g., Refs. [136, 137]
for an overview and Sect. 6 for some basic NEGF applications.

Eventually, it may be useful to map even a non-lattice quantum system onto an
equivalent system the Hamiltonian of which has the form of a lattice system. Doing
so can be beneficial at least in two aspects:

(i) it may improve the convergence of relevant observables regarding the basis size,
and (or)

(ii) it may allow for sparse representations of operator matrix elements.

Following (i) and (or) (ii), the numerical solution of the KBEs should be easier.
Concerning point (ii), especially a sparse representation (e.g., a high degree of di-
agonality) of the binary interaction is desirable as it can drastically simplify the
self-energies and, in addition, the collision integrals of the KBEs, compare with
Sects. 3.3.3 and 3.3.4. Moreover, it may be the case that long-range interactions,
such as the contributions beyond next-neighbor interaction in the Hubbard model
and its variations, cf. [138], can be neglected.

In the following section, we give an example of a very general procedure for map-
ping a spatially continuous system onto an equivalent lattice system. This procedure
is based on finite elements and the discrete variable representation, e.g., Ref. [139],
and has the great advantage of offering very simple and analytically determined
matrix elements for, both, one- and two-particle operators.
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3.3 An Efficient Solution: The Finite Element-Discrete Variable
Representation

3.3.1 General Idea and Background

The numerical solution of (non-)linear partial differential equations (PDEs) usually
requires small mesh spacings as typically rather low-order finite-difference methods
are applied to approximate linear differential operators. If the solution of the PDE
is, on the other hand, expanded in function space such that we deal with a matrix
equation for the coefficients, often large dimensions are necessary to obtain adequate
accuracy. In addition, the computation of the matrices can itself be elaborate.

In this dilemma, the finite element-discrete variable representation (FE-DVR)
opens a hybrid approach combining favorable aspects of, both, (spatial) grids and
basis expansions, cf. Ref. [140]. The main idea is to divide the coordinate space into
fixed domains in each of which a purely local, so-called DVR basis is employed to
describe local variations. In the course of this, the basis itself relies on a subordinate
grid that is connected10 to a set of interpolating polynomials. Regarding quantum
mechanics, the great advantage of the FE-DVR is a sparse representation of local
and non-local one- as well as two-particle operators, see Sect. 3.3.3.

One ingredient of the FE-DVR, the discrete variable representation, has been
widely used in quantum chemistry, e.g., [141, 142]. In combination with finite el-
ements, it has become more and more popular in the recent decade in the context
of numerically solving the one- and two-particle time-dependent Schrödinger equa-
tion (TDSE). Pioneering work along this line is due to Rescigno and McCurdy,
cf. Ref. [139], as well as Schneider, cf. Ref. [143]. Respective applications are
widespread and include, e.g., the description of scattering problems in combination
with time-dependent close coupling [144], the determination of bound and contin-
uum states as well as the strong-field photoionization cross sections of the hydrogen
molecular ion [145, 146] and approaches to molecular hydrogen (i.e., two elec-
trons) [147], and ions in circularly polarized laser fields [148]. Moreover, combined
FE and DVR schemes are, to date, also used in multiconfiguration time-dependent
Hartree-Fock (MCTDHF) and configuration interaction (CI) calculations, see, e.g.,
Refs. [17, 149] and references therein.

Aside from simple and analytically accessible matrix elements, one of the key
properties of the FE-DVR regarding the time evolution of a (many-body) wave func-
tion is its potential for a highly effective TDSE-code parallelization. To this end, one
applies the real-space product ansatz discussed in Ref. [150]. On the other hand,
when applied to NEGF calculations, the main advantage will be the sparse repre-
sentation, cf. Sects. 3.3.3 and 3.3.4. Applications to model atoms and molecules can
be found in Chap. 6.

In the following, we introduce the FE-DVR approach in one spatial dimension.
The generalization to higher dimensionality is straightforward using product states
in Cartesian space, cf., e.g., Ref. [143].

10Similar to methods using B-splines.
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Fig. 3.2 One-dimensional simulation box S = [0, x0] as discretized in the finite element-discrete
variable representation (FE-DVR). Each finite element [xi, xi+1] is subdivided by ng generalized
Gauss-Lobatto points defined along Eqs. (3.8) and (3.9)

3.3.2 Construction of the FE-DVR Basis

For a one-dimensional simulation box S = [0, x0], we consider its partitioning into
finite elements [xi, xi+1] where (i = 0,1, . . . , ne − 1),

x0 < x1 < x2 < · · · < xne−1 < xne ,

x0 = 0, xne = x0,
(3.6)

and ne denotes the number of sub-intervals, see Fig. 3.2.
An accurate, pointwise representation of a function g(x) within each sub-interval

can be obtained from a quadrature rule that uses interpolating functions to approx-
imate definite integrals. In our case, we take the Gauss-Lobatto quadrature as a
starting point. It estimates an integral over the interval [−1,1] as (ng abscissas),

∫ +1

−1
dx g(x) ≈

ng−1
∑

m=0

wmg(xm), (3.7)

and is exact for polynomials of maximum degree 2ng −1. The integration points xm

and weights wm are defined by11 (m = 0,1, . . . , ng − 1),

dLng−1(x)

dx

∣
∣
∣
∣
x=xm

= 0,

wm =
⎧

⎨

⎩

2
ng(ng−1)

, m = 0, ng − 1,

2
ng(ng−1){Lng−1(xm)}2 , otherwise,

(3.8)

with the Legendre polynomial Lng−1(x). For a collection of numerical values for
xm and wm, see, e.g., Ref. [151].

The extension of Eq. (3.7) to an arbitrary interval [xi, xi+1] is mediated by a lin-
ear transformation and leads to the generalized Gauss-Lobatto (GGL) points [139],

xi
m = 1

2

{(

xi+1 − xi
)

xm + (xi+1 + xi
)}

, (3.9)

and the associated weights,

11As the roots of Legendre polynomials are symmetric about x = 0, the same symmetry applies to
the Gauss-Lobatto points (weights) xm (wm).
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Fig. 3.3 (a) Integration of a function g(x) (solid line) and (b) its approximate g̃(x) (dash-dotted
line) according to Eq. (3.11) for ne = 3 elements, ng = 5 generalized Gauss-Lobatto points per
element, and the constraint g̃(0) = g̃(x0) = 0. Panel (c) shows the corresponding Lobatto shape
functions f i

m(x) of Eq. (3.12), and panel (d) indicates the normalized FE-DVR basis functions
χi

m(x), cf. Eq. (3.16). Neglecting the first and the last DVR function in the construction, the basis
has dimension nb = 11. Note that each of the two bridge functions (gray dashed lines) extends
over two adjacent finite elements to guarantee spatial continuity

wi
m = 1

2
wm

(

xi+1 − xi
)

. (3.10)

Here, the superscript i refers to the i-th element of the simulation box partitioning
(3.6), compare with Fig. 3.2.

Computationally, an integral over the entire simulation box S can now be per-
formed by successive applications of the quadrature rule. Under the additional con-
straint of a vanishing integrand at the interval boundaries x = 0 and x = x0, we
obtain the estimator,

G =
∫ x0

0
dx g(x) =

ng−1
∑

i=0

∫ xi+1

xi

dx g(x) ≈
ne−1
∑

i=0

ng−1
∑

m=0

wi
mg
(

xi
m

)= G̃. (3.11)

For an illustration of an integral with ne = 3 elements and ng = 3 GGL points, see
Fig. 3.3(a) and (b).

For sufficiently smooth functions g(x) in Eq. (3.11), convergence G̃(ne, ng) → G

is reached faster by adding finite elements than increasing the maximum order of
the interpolating polynomials (increase of ng). For this reason, the number of GGL
points can be kept quite small—typically ng < 10, cf. Ref. [139]. Moreover, we
emphasize that the estimated value may be highly inaccurate if the integrand is not
continuously differentiable within S . This fact is related to the Gibbs phenomenon
observed in Fourier series.

The interpolating functions behind Eq. (3.11) are usually referred to as DVR or
Lobatto shape functions (see Refs. [139, 152]) and have the polynomial form,
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f i
m(x) =

⎧

⎨

⎩

∏

m′ �=m

x−xi
m′

xi
m−xi

m′
, xi ≤ x ≤ xi+1,

0, otherwise.
(3.12)

Figure 3.3(c) shows them for the partitioning introduced in panel (a) and (b), re-
spectively. For further reference, we collect some important properties:

(i) For Lobatto shape functions evaluated at a GGL point xi′
m′ , we have12,

f i
m

(

xi′
m′
)= δii′

mm′, (3.13)

(ii) two Lobatto shape functions are orthogonal in the sense of the generalized
Gauss-Lobatto quadrature, i.e.,

∫ x0

0
dx f i

m(x)f i′
m′(x)

(3.11)= δii′
mm′wi

m, (3.14)

(iii) the first derivative at a GGL point reads,

df i
m(x)

dx

∣
∣
∣
∣
x=xi′

m

=

⎧

⎪⎪⎨

⎪⎪⎩

1
xi
m

∏

m̄�=m,m′
xi
m′−xi

m̄

xi
m−xi

m̄

, m = m′,

δm,ng−1+δm0

2wi
m

, otherwise.

(3.15)

With Eq. (3.14), the subset of those Lobatto shape functions which are non-zero
in element i form locally, i.e., in element i, a complete basis. This basis is called a
DVR basis. However, in order to extend it to the whole simulation box S , we must
account for the following: As the Lobatto shape functions in adjacent elements are
independent of each other (note, there is no overlap), they generally cannot represent
a continuous function in the joined space. To resolve this problem, we combine the
last function f i

ng−1(x) of element i and the first function f i+1
0 (x) of element i + 1

into a single one, cf. the dashed and dash-dotted lines in Fig. 3.3(d). Such a “bridge”-
function exhibits the required overlap and, hence, guarantees spatial continuity of
any expanded quantity. Moreover, we refrain from including the very first and the
very last Lobatto shape function, f 0

0 (x) and f
ne−1
ng−1 (x), in the construction of the

basis which is consistent with the boundary condition that any physical quantity
vanishes at x = 0 and x = x0.

After proper normalization in the sense of the generalized Gauss-Lobatto rule of
Eq. (3.11), we arrive at the following FE-DVR basis functions [139]:

χi
m(x) =

⎧

⎪⎨

⎪⎩

f i
ng−1(x)+f i+1

0 (x)

{wi
ng−1+wi+1

0 }1/2
, m = 0 (bridge),

f i
m(x)

{wi
m}1/2 , otherwise (element).

(3.16)

Note that m is now ranging from 0 to ng − 2, such that the total dimension of the
FE-DVR basis is given by,

12With the short-hand notation δii′
mm′ = δii′δmm′ .
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nb = ne(ng − 1) − 1, (3.17)

compare with Fig. 3.3(d).

3.3.3 Matrix Elements of Relevant Energies

As a next step, we, in FE-DVR representation, have to determine the matrix ele-
ments of the single-particle energy h(1)(t) = t (1) + v(1)(t) and the binary interac-
tion w(2) because they enter the Kadanoff-Baym equations. For simplicity, we in-
troduce the multi-indices μ = (i,m), ν = (i′,m′), μ̄ = (ī, m̄) and ν̄ = (ī′, m̄′), refer
to the FE-DVR basis functions as |μ〉 = χi

m(x), and compute the matrix elements

h
(1)
μν (t) = 〈μ|h(1)(t)|ν〉 and w

(2)
μνμ̄ν̄ = 〈μν|w(2)|μ̄ν̄〉. Computationally, it is conve-

nient to treat the bridge function χi
0(x) as the last basis function in each element i

(cf. also Fig. 3.4).
For the single-particle energy, one easily verifies that13,

v(1)
μν (t) =

∫ x0

0
dx χi

m(x)v(1)(x, t)χi′
m′(x)

= δμνṽ
(1)
μ (t), (3.18)

where,

ṽ(1)
μ (t) =

{

v(1)(xi
ng−1, t), m = 0,

v(1)(xi
m, t), otherwise.

(3.19)

To determine the matrix of the kinetic energy is somewhat more subtle. This is
for two reasons: First, the non-locality caused by the differential operator ∂2/∂x2 in
(m denotes the particle mass),

t (1)
μν = − �

2

2m

∫ x0

0
dx χi

m(x)
∂2

∂x2
χi

m(x), (3.20)

and, second, the fact that all FE-DVR basis functions have discontinuous derivatives
at the element boundaries xi (i = 0,1, . . . , ne), cf. Fig. 3.3(d). Following the deriva-
tion of Ref. [139], one has to properly define the second derivative of an FE-DVR
basis function under the integral of Eq. (3.20) and obtains the final result:

13The same result holds for any other operator that is local in space.
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t (1)
μν = 1

2

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δii′ (t̃
(1),i
ng−1,ng−1+t̃

(1),i+1
00 )+δi,i′+1 t̃

(1),i
ng−1,0+δi,i′−1 t̃

(1),i′
0,ng−1

{(wi
ng−1+wi+1

0 )(wi′
ng−1+wi′+1

0 )}1/2
, m = m′ = 0,

δii′ t̃
(1),i

ng−1,m′+δi,i′−1 t̃
(1),i′
0m′

{wi
ng−1+wi+1

0 }1/2
, m = 0,m′ > 0,

δii′ t̃
(1),i
m,ng−1+δi,i′+1 t̃

(1),i
m0

{wi
m1

(wi′
ng−1+wi′+1

0 )}1/2
, m > 0,m′ = 0,

δii′ t̃
(1),i

mm′
{wi

mwi
m′ }1/2 , m,m′ > 0,

(3.21)

where the quantity t̃ (1) is related to the derivative of Lobatto-shape functions by,

t̃
(1),i

mm′ =
∑

m̄

wi
m̄

df i
m(x)

dx

∣
∣
∣
∣
x=xi

m̄

· df i
m(x)

dx

∣
∣
∣
∣
x=xi

m̄

. (3.22)

Finally, we consider the matrix elements of the binary interaction w(2) in FE-
DVR representation. They are defined by (we use the physicist’s notation [36]),

w
(2)
μν,μ̄ν̄ =

∫ x0

0
dx

∫ x0

0
dx̄ χμ(x)χμ̄(x̄)w(2)(x − x̄)χν(x)χν̄(x̄), (3.23)

and are symmetric with respect to interchange of μ ↔ ν, μ̄ ↔ ν̄ and pairs (μ, ν) ↔
(μ̄, ν̄). Using Eq. (3.11), we find,

w
(2)
μν,μ̄ν̄ = δμνδμ̄ν̄ w̃

(2)
μν , (3.24)

with,

w̃(2)
μν =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w(2)(xi
ng−1 − xi′

ng−1), m = m′ = 0,

w(2)(xi
ng−1 − xi′

m′), m = 0, m′ > 0,

w(2)(xi
m − xi′

ng−1), m > 0, m′ = 0,

w(2)(xi
m − xi′

m′), m,m′ > 0,

(3.25)

which means, we just have to evaluate the interaction potential for particles located
at the relevant GGL points.

With Eqs. (3.18), (3.21) and (3.24), all required matrix elements are analytically
known for a given set of Gauss-Lobatto points. Thereby, the potential energy is
diagonal and the kinetic energy has a block-diagonal representation14. But most
important is the result for the binary interaction, cf. Eq. (3.24). Here, the properties
of the FE-DVR basis lead to a high degree of diagonality such that the two-particle
interaction potential can be represented by an object of the size of a single-particle
quantity, see Eq. (3.25). Although the matrix w̃

(2)
μν is generally fully occupied, this

means a great advantage, as only few matrix elements have to be precomputed and,
in turn, the evaluation of self-energies can drastically be simplified, cf. Sect. 3.3.4.
The structure of all relevant matrices are illustrated in Fig. 3.4(a), (b), and (c).

14This becomes clear after a thorough analysis of Eg. (3.21).
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Fig. 3.4 Structure of the matrix of (a) the potential and (b) the kinetic energy in an FE-DVR basis
of dimension nb = 11. The grid parameters are as in Fig. 3.3. Panel (c) shows the matrix w̃(2) for
a typical two-body interaction of the form w(2)(x − x′) = [(x − x′)2 + 1]−1/2. For the potential
energy, we have chosen v(1)(x) = 1

2 (x − x0
2 )2. For the kinetic energy, negative matrix elements are

marked by a minus sign. In all panels, the matrix elements associated with the first, respectively,
the second bridge function are labeled by (*), respectively, (**), and no entry (i.e., no box) means
that the corresponding matrix element (μ, ν) is zero

As a final remark, we note that the above results also hold for the case when the
number of Lobatto shape functions varies from element to element. For details, we
refer to Ref. [143].

3.3.4 First- and Second-Order Self-energies

Using the results of the last Section, we now can give explicit FE-DVR expressions
for the HF and 2B self-energies as depicted in Fig. 2.6 of Chap. 2. Since the 1pSE
functionally depends upon the 1pNEGF G(1) and the binary interaction w(2), we can
use Eq. (3.24) to express it in terms of the reduced quantity w̃(2) of Eq. (3.25). In
the course of this, some summations vanish due to the Kronecker deltas. In the fol-
lowing, we use the same notation as above (see the paragraph preceding Eq. (3.18))
and include a spin degeneracy factor ξ = 2 which accounts for double occupancy of
states for a closed-shell electron system15.

15For a spin-polarized system, we have ξ = 1.



54 3 Representations of the Nonequilibrium Green’s Function

For the (regular) HF self-energy, we obtain (cf. Eqs. (2.45) and (2.46)),

Σ(1),HF
μν

(

t, t ′
)= δC

(

t − t ′
)

Σ(1),HF
μν (t)

= δC
(

t − t ′
){

Σ(1),H
μν (t) + Σ(1),F

μν (t)
}

, (3.26)

with,

Σ
(1),H
μν (t) = −iξδμν

∑

μ̄

w̃
(2)
μμ̄G

(1)
μ̄μ̄

(

t, t+
)

,

Σ
(1),F
μν (t) = iw̃(2)

νμG
(1)
νμ

(

t, t+
)

.

(3.27)

Further, for the (irregular) part of the 2B self-energy, we have (cf. Eq. (2.61)),

Σ(1)
μν

(

t, t ′
)=
∑

μ̄

∑

ν̄

w̃
(2)
μμ̄w̃

(2)
νν̄ G

(1)
μ̄ν̄

(

t ′, t
)

× {ξG(1)
μν

(

t, t ′
)

G
(1)
ν̄μ̄

(

t, t ′
)− G

(1)
μν̄

(

t, t ′
)

G
(1)
ν̄μ

(

t, t ′
)}

, (3.28)

where, consistently with the HF self-energy, only the direct term involves ξ .
Let us compare the numerical effort behind Eqs. (3.27) and (3.28) to that of a

general basis representation that offers not as much diagonality, i.e., where all matrix
elements of the interaction w(2) have to be taken into account. The determination of
the HF self-energy along Eq. (3.27) requires an effort of n3

b for the direct term and
n2

b for the exchange term. In contrast, in the general case, we know that two internal
summations are due for both terms leading overall to an effort of n4

b, compare with
Eq. (2.46). Hence, we save a factor of (at least) nb operations. For the irregular parts
of the second Born self-energy, the situation is even more dramatic: Instead of the
general scaling16 like n8

b according to formula (2.61), we are left with n4
b in FE-DVR

representation. Computationally, this means an enormous increase of efficiency as
during the integration of the KBEs, the 1pSE has to be computed many times, see
Chap. 4.

The generalization of the above scaling behavior to arbitrary 1pSEs is straight-
forward. If the respective self-energy diagram involves M vertex points (M inter-
mediate integrations or summations), the effort is reduced from n2M

b to n∗
b = nM

b in
FE-DVR representation, i.e., instead of a quadratic scaling in n∗

b we are left with a
linear one. This is a very promising result and should enable calculations with sig-
nificantly larger basis dimensions, higher-order MBAs and (or) substantially longer
time propagation.

Having obtained an efficient representation of the Hamiltonian and the self-
energy, we are now ready to consider the evaluation of the collision integrals and
the numerical solution of the KBEs (see Chap. 4).

16Restore all orbital indices and insert the full matrix for w(2).



Chapter 4
Computation of Equilibrium States
and Time-Propagation

While in the last chapter, we have discussed possible and advantageous representa-
tions of the 1pNEGF when dealing with the description of inhomogeneous quantum
many-body systems far from equilibrium, the present chapter gives an overview
on the computational aspects when numerically solving the KBEs with a generic
two-time (i.e., irregular) self-energy beyond the HF level. First, we will cover the
initial state preparation on the basis of the Dyson equation in τ -space [68, 129]
(cf. Sect. 4.1), and, thereafter, we will discuss the time evolution of the 1pNEGF
(cf. Sect. 4.2) along the Keldysh contour [80].

In the second part, in addition to the description of the general algorithm, impor-
tant issues are the parallelization of the two-time propagation [153] and an efficient
implementation of the generalized Kadanoff-Baym ansatz (GKBA) introduced in
Sect. 2.4.2.

4.1 Preparing the Initial State: Ground State or Equilibrium

In fact, a code that solves the KBEs (2.32) in real time is fully sufficient to gen-
erate also self-consistent (stationary and correlated) initial states. To this end, we
adiabatically switch on the interaction [154] and, at time t0, start from the ideal
non-interacting system the 1pNEGF of which is usually known. The generalized
two-body interaction w(2)(t − t ′) of Eq. (2.30) is then replaced by,

w(2)
(

t − t ′
)→ λ(t)w(2)

(

t − t ′
)

, (4.1)

and the switching function λ(t) gradually changes from zero at time t0 to one at
a later time ts, for an example, see Fig. 4.1. If the switching time ts − t0 is suffi-
ciently long (at least comparable to � over the typical level spacing), the many-body
system passes through a series of intermediate eigenstates, and, finally, the equilib-
rium (eigen)state of the fully interacting system is reached1. Recalling the KBEs of

1This approach is originally due to Keldysh [59] and gets along without mixed Green’s functions
as no initial correlations are present.
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Fig. 4.1 Adiabatic switch-on
of the interaction on the time
interval [t0, ts] = [0,20] with
switching functions of the
form λ(t) = 1
− [exp(λ0(t − 10)) + 1]−1.
While function (a) is suitable
for modeling the switch-on,
function (b) cannot be used as
it is not sufficiently zero (one)
at the interval boundaries

Eq. (2.32), we emphasize that the switching function enters in two ways: as function
of t in the first equation and as function of t ′ in the second, adjoint equation2.

In view of the fact that full two-time solutions of the KBEs are limited in prop-
agation time and that there are only few time steps to waste (see the discussion in
Sect. 4.2.1 below), it is basically not an advantage to use adiabatic switching if the
initial state is interacting. By contrast, it is more favorable to obtain an initial state
directly from the KBEs’ equilibrium limit—the Dyson equation—though this re-
quires to include mixed Green’s functions in the subsequent real-time propagation.
To outline the preparation of initial states by solving the Dyson equation is the is-
sue of the present section. The term “ground state” will refer to the special case of
β → ∞ (zero-temperature limit), and a “well-defined” initial state means one which
is self-consistent and which remains stationary in a subsequent time propagation of
the 1pNEGF if no external field is applied and the same approximation level is used
for the self-energy.

4.1.1 Time or Frequency Space?

There are two equivalent ways of addressing the Dyson equation. Either we can treat
it in the form of Eq. (2.38), or we can look at its (discrete) Fourier transform with
respect to the time variable τ . While the former approach is the most natural one
dealing with the imaginary track of the Keldysh contour, the latter represents the
standard formulation often preferred in equilibrium and ground-state calculations.
However, if one is mainly interested in the system’s real-time evolution, whereby
the collision integrals in the KBEs range over the full time contour and involve
integrations over mixed Green’s functions, it is useful to stay with time space.

In Sect. 4.1.2, we will discuss the solution of the Dyson equation in the τ -domain.
In frequency space, the Dyson equation is given by,

{

ωδik − 〈i|h(1)|k〉}G(1),M
kj (ω) = δij + Σ

(1),M
ik (ω)G

(1),M
kj (ω), (4.2)

2Therefore, also in the two-time self-energies, the switching function must carry the correct time
argument (not only the physically relevant center of mass time!).
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or, in integral form:

G
(1),M
ij (ω) = G

(1),M
0 (ω) + G

(1),M
0,ik (ω)Σ

(1),K
kl (ω)G

(1),M
lj (ω), (4.3)

with the (effectively) non-interacting Green’s function G
(1),M
0 and Σ(1),K defined

consistently to Eq. (2.42). In terms of the inverse Green’s function, Eq. (4.3) can
also be written as,

[

G
(1),M
ij

]−1
(ω) = [G(1),M

0,ij

]−1
(ω) − Σ

(1),K
ij (ω). (4.4)

An iterative scheme to obtain self-consistent solutions of (4.3) up to second order
is described, e.g., in Refs. [155, 156] which focus on calculations for closed- and
open-shell atoms (from He up to Kr).

If a diagonal representation exists3, a formal solution of Eq. (4.3) reads,

G
(1),M
ij (ω) = δij

ω − ω0,i − Σ
(1),M
irreg,i (ω)

, (4.5)

where ω0,i are the energies of the (effective) single-particle Hamiltonian. In the
ground state (β → ∞), we recover the connection of Eq. (4.5) to the spectral or
Lehmann representation [55]:

G
(1),M
ij (ω) =

∑

k

〈Ψ (N)
0 |f̂i |Ψ (N+1)

k 〉〈Ψ (N+1)
k |f̂ †

j |Ψ (N)
0 〉

ω − ω
(N+1)
k + ω

(N)
0 + iη

+
∑

k

〈Ψ (N)
0 |f̂ †

j |Ψ (N−1)
k 〉〈Ψ (N−1)

k |f̂i |Ψ (N)
0 〉

ω + ω
(N−1)
k − ω

(N)
0 − iη

, (4.6)

where |Ψ (N)
0 〉 denotes the exact ground-state wave function of the system with

energy ω
(N)
0 and particle number N . Further, {|Ψ (N±1)

k 〉} indicates the full set of

states of the associated N ± 1-particle system with energies ω
(N±1)
k , and η → 0+

is an infinitesimal positive parameter that ensures convergence. In the numerator of
Eq. (4.6), the matrix elements are the so-called Feynman-Dyson amplitudes. In the
denominator, the expressions ω

(N±1)
k − ω

(N)
0 represent the state-selective addition

and removal energies.
We note that the Matsubara Green’s function can also be expanded in a Fourier

series of the form [55] (n = 0,±1,±2, . . .),

G
(1),M
ij (τ ) = 1

β

∑

n

exp (−iωnτ)G
(1),M
ij (iωn),

G
(1),M
ij (iωn) =

∫ β

0
dτ exp (iωnτ)G

(1),M
ij (τ ),

(4.7)

3I.e., if, both, the single-particle Hamiltonian and the irregular part of the 1pSE are diagonal with
respect to the same (spin-)orbital basis.
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where, in the case of fermions4, the Matsubara frequencies are given by,

ωn = (2n + 1)π(β�)−1. (4.8)

The discreteness is a direct consequence of the fact that the τ -interval is bounded5.
Moreover, representation (4.7) must not be confused with the spectral one of
Eq. (4.3) or Eq. (4.5), though there exists a unique relation between both as first
pointed out by Baym and Mermin, see Ref. [157].

4.1.2 Solution of the Dyson Equation in τ -Space

For the numerical solution of the Dyson equation for inhomogeneous systems in
thermodynamic equilibrium, we use the grand canonical ensemble and start from
Eq. (2.42) following the idea of Ref. [68]. As a first step, we need to calculate the
effectively non-interacting Green’s function G

(1),M
0 (τ ) which obeys,

{

i�
∂

∂τ
− 〈i|h(1)|k〉 − Σ

(1),M
0,ik

}

G
(1),M
0,kj (τ ) = δ(τ )δij . (4.9)

Note that Σ
(1),M
0 is defined through Eq. (2.41). In the eigenbasis determined by the

effective one-particle Hamiltonian, h(1),eff = h(1) + Σ
(1),M
0 , the solution is diagonal

and can be written in the form,

G
(1),M
0,ij (τ ) = δij f (εi − μ;β) exp

[−τ(εi − μ)
]

. (4.10)

Here, the energies εi are the eigenvalues of the effective Hamiltonian, f (εi − μ;β)

denotes the Fermi-Dirac distribution, and μ is the chemical potential. The latter
follows implicitly by demanding the normalization N =∑i f (εi − μ;β), where N

is the given average particle number.
As the energies εi generally depend on ρ1 = G

(1),M
0 (0−) through the self-energy,

Eq. (4.10) must be iterated to determine a self-consistent solution. To this end, a
symmetric 1pRDM “not too far away” from the intended fixed point may serve
as starting point. Finally, the Green’s function in the original spin-orbital basis is
obtained by inverse transformation using the eigenvectors of h(1),eff. We mention
that this goes along with a mixing of different exponential decays of Eq. (4.10).

In the zero-temperature limit (β → ∞), the iterative procedure of computing
G

(1)
0 (τ ) is equivalent to the self-consistent field (SCF) method [36] and the chemical

potential will be situated within the energy interval of the highest occupied “molec-
ular” orbital and the lowest unoccupied “molecular” orbital (HOMO-LUMO gap).

4For bosons, we have even multiples of (β�)−1.
5To define the Fourier transform, however, the time τ is periodically extended beyond the interval
[−β,+β].
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As a consequence, methods known from SCF codes which improve convergence6

are also applicable here, for an overview, see Ref. [35].
Once the effectively non-interacting Green’s function is obtained, we can account

for irregular parts of the 1pSE by solving Eq. (2.42). This, again, requires one to
iterate. However, there are basically two strategies to account for the right hand
side. Either one can transform the integral equation (2.42) into a set of multiple
linear systems of equations (how this works is shown in Refs. [68, 129]), or one can
evaluate the nested convolution integrals directly. The latter approach is generally
more stable and reliable. Also, it saves computer memory and remains practical
for large basis dimensions. To be comprehensive, we write out Eq. (2.42) in full
(τ ∈ [−β,+β]):

G
(1),M
ij (τ ) = G

(1),M
0,ij (τ ) + I

(1),M
ij (τ ), (4.11)

where (we sum over k),

I
(1),M
ij (τ ) =

∫ β

0
dτ̄ G

(1),M
0,ik (τ − τ̄ )

{

J
(1),M
kj (τ̄ ) − K

(1),M
kj (τ̄ )

}

,

J
(1),M
ij (τ ) =

∫ β

0
dτ̄ Σ

(1),M
ik (τ − τ̄ )G

(1),M
kj (τ̄ ), (4.12)

K
(1),M
ij (τ ) =

{

Σ
(1),M
0,ik G

(1),M
kj (τ ), 0 ≤ τ ≤ β,

0, otherwise.

While the self-energy Σ(1),M(τ ) in the second line of Eq. (4.12) is a functional of
the full Matsubara Green’s function and is, therefore, updated in each iteration, in
the third line of Eq. (4.12), Σ(1),M

0 is constant and a functional of the non-interacting
Green’s function only. Moreover, the Matsubara Green’s function tends7 to be large
around τ = 0,±β and decays towards ±β

2 (compare with Eq. (4.10)). For this rea-
son, it is highly recommended to use an adapted (non-equidistant) τ -grid such as a
uniform power mesh [68, 158]. This allows for a more adequate representation of
the Green’s function but usually requires interpolation to account for specific time
differences τ − τ̄ in Eq. (4.12).

As outlined in Sect. 2.2.2, it is sufficient to search for a self-consistent solution
of the Dyson equation on the interval [−β,0]. Along this line, a sensitive control
parameter is provided by the particle number N =∑i G

(1),M
ii (0−), and good mea-

sures for self-consistency are the element-wise convergence of the 1pRDM as well
as the convergence of the correlation energy,

〈Ĥcor〉 = 1

2

∫ β

0
dτ Tr

{

Σ(1),M,irreg(−τ)G(1),M(τ )
}

. (4.13)

6E.g., by averaging (damping) or extrapolation schemes.
7Depending on the chosen basis.
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Finally, regarding the real-time evolution of the Green’s function, the specification
of the Matsubara Green’s function at τ = 0− and its τ -dependence represent proper
KMS boundary conditions in the sense of Eq. (2.22).

Applications of the iterative procedure along Eqs. (4.11) and (4.12) can be found,
e.g., in the computation of quasi-particle band gaps of silicon and germanium,
see Ref. [158], or in self-consistent second Born as well as GW calculations for
atoms and molecules, see Refs. [68, 131]. Extensions to few-electron quantum dots
are presented in Ref. [129].

4.2 Nonequilibrium

In general, a NEGF study of systems far from equilibrium requires to integrate the
Kadanoff-Baym equations (2.32) simultaneously with respect to the two contour
time variables t and t ′. Initial conditions are realized by supplying the lesser Green’s
function G(1),<(t0, t0) and, if the initial state is correlated, either G(1),�(t0 − iβ, t0)

(compare with Sect. 4.1) or an additional self-energy Σ
(1)
in , cf., e.g., Ref. [118].

The third option would be to start from the non-interacting Green’s function and,
as outlined above, to perform an adiabatic switch-on of the interaction prior to the
computation of the actual dynamics of interest.

As the KBEs represent non-Markovian equations of motion when the one-
particle self-energy is irregular (i.e., when correlations are included), each infinites-
imal time evolution has, in principle, to account for the full past of the system’s dy-
namics. This leads to a two-time propagation with a memory kernel K as illustrated
in Fig. 4.2. Only if the 1pSE is regular, i.e., time diagonal, or further approximations
such as the generalized Kadanoff-Baym ansatz (GKBA) are applied, the time propa-
gation can be simplified and organized along the direction of the physically relevant
center of mass time.

4.2.1 Two-Time Propagation Method

For the two-time propagation of the 1pNEGF for homogeneous systems8, a numer-
ical algorithm is outlined in Ref. [114] with reference to optically excited semicon-
ductor electron-hole plasmas and nuclear heavy-ion collisions. The key points are
here the use of the momentum representation and the performance of the convolu-
tion integrals (cf. K in Fig. 4.2) by fast Fourier transform.

Applications to finite and inhomogeneous systems follow, for the most part, the
generic work of Stan et al. [80] which covers the Hartree-Fock (HF), the second
Born (2B) and the GW approximation. Here, the main idea is to set up a matrix

8Practically, all the literature considers the case of fermions.
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Fig. 4.2 Illustration of the
two-time propagation of the
1pNEGF G(1)(t, t ′) under the
presence of the memory
kernel K

algebra for the time-stepping procedure which is based on the time-evolution oper-
ator constructed from the single-particle plus Hartree-Fock energy. This allows one
to eliminate the HF self-energy from the collision integrals (i.e., from the r.h.s. of
the KBEs).

To be able to describe later a parallelized version of the propagation method for
inhomogeneous systems, we repeat the most important steps of Ref. [80]. First, we
discretize9 the time variables t and t ′ in units of a constant time step Δt . Further,
we make use of the fact that the greater and lesser correlation functions are re-
lated by Eq. (2.22), i.e., due to symmetry, we only need to compute, for example,
G(1),>(t, t ′) for t > t ′ and G(1),<(t, t ′) for t ≤ t ′. As the two-time HF self-energy
is regular and proportional to a contour delta function δC (t − t ′) (compare with
Eqs. (2.45) and (2.46)), the corresponding collision term can be evaluated to,

∫

C
dt̄ Σ(1),HF(t, t̄)G(1)

(

t̄ , t ′
)= Σ(1),HF(t)G(1)

(

t, t ′
)

, (4.14)

where the quantity Σ(1),HF(t) has just the form of an additional potential which
depends on the interaction w(2) and the 1pRDM. In the KBEs, we can easily account
for this term by replacing the single-particle energy h(1)(t) by an effective one:
h

(1)
eff (t) = h(1)(t)+Σ(1),HF(t). Hence, the first KBE reads (dropping spin and orbital

degrees of freedom),
{

−i�
∂

∂t
− h

(1)
eff (t)

}

G(1)
(

t, t ′
) = δC

(

t − t ′
)+ I (1)

(

t, t ′
)

,

I (1)
(

t, t ′
) =
∫

C
dt̄ Σ

(1)
irreg(t, t̄ )G

(1)
(

t̄ , t ′
)

.

(4.15)

Using the unitary time-evolution operator10,

U(t;Δt) = exp

(

− i

�
h

(1)
eff (t)Δt

)

, (4.16)

9For an approach that uses relative and center of mass variables, see, e.g., Ref. [159].
10Its matrix elements follow from diagonalizing h(1),eff.
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we can derive simple expressions for the time stepping of each NEGF component11.
For a sufficiently small time step of length Δt , one obtains,

G(1),>
(

t∗ + Δt, t̄
) = U

(

t∗;Δt
)

G(1),>
(

t∗, t̄
)− V

(

t∗;Δt
)

I
(1),>
1

(

t∗, t̄
)

,

G(1),<
(

t̄ , t∗ + Δt
) = G(1),<

(

t̄ , t∗
)

U†
(

t∗;Δt
)− I

(1),<
2

(

t̄ , t∗
)

V †
(

t∗;Δt
)

,
(4.17)

and, along the time diagonal,

G(1),<
(

t∗ + Δt, t∗ + Δt
)

= U
(

t∗;Δt
)(

G(1),<
(

t∗, t∗
)+ W

(

t∗;Δt
))

U†(t∗;Δt
)

, (4.18)

where (matrix valued),

V (t;Δt) = 1

h(1),eff(t)

{

1 − exp

(

− i

�
h

(1)
eff (t)Δt

)}

, (4.19)

and12,

W(t;Δt) =
∞
∑

n=0

wn(t;Δt),

wn(t;Δt) = i�Δt

n + 1

[

h(1),eff(t),wn−1(t;Δt)
]

−,

w0(t;Δt) = −i�ΔtI
(1),<
12 (t),

(4.20)

with I
(1),<
12 (t) = I

(1),<
1 (t, t) − I

(1),<
2 (t, t). If needed, the mixed Green’s function

G(1), must be propagated according to,

G(1),(t∗ + Δt, t0 − iτ̄
)

= U
(

t∗;Δt
)

G(1),(t∗, t0 − iτ̄
)− V

(

t∗;Δt
)

I (1),(t∗, t0 − iτ̄
)

. (4.21)

In Eqs. (4.17) and (4.21), all quantities are known for times t, t ′ ≤ t∗ (see Fig. 4.2),
and the “collision” integrals I

(1),>
1 (t, t ′), I

(1),<
2 (t, t ′) and I (1),(t, t0 − iτ) are the

components of the convolution integral in Eq. (4.15). To obtain their structure in
terms of the 1pSE and 1pNEGF components, one applies the Langreth-Wilkins
rules. In addition, we note that the following symmetries hold,

I
(1),≷
1

(

t, t ′
)= −[I (1),≷

2

(

t ′, t
)]†

, I
(1),>
1,2 (t, t) = I

(1),<
1,2 (t, t). (4.22)

Basically, the integration error of the above scheme is of the order Δt2. However,
there exist different ways to improve the time integration [80]. One possibility is
to recalculate the HF self-energy and the collision integrals at times t∗ using the
nonequilibrium Green’s functions for t∗ + Δt . A subsequent time stepping with

11The derivation is given in Ref. [80]
12The n-th term is of the order Δtn+1 such that contributions with n > 3 can usually be neglected.
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averaged values13 for Σ(1),HF and I (1),x (x = >,<, �) then leads to an improved
Green’s function at time t∗ + Δt . Moreover, during the time evolution, one should
check for particle number conservation by verifying that,

Tr
{

I
(1),<
12 (t, t)

}= 0. (4.23)

This relation is very sensitive to potential implementation errors and follows from
inserting Eq. (4.18) into N = −i�Tr {G(1),<(t + Δt, t + Δt)} and using the cyclic
invariance of the trace as well as the unitarity of U(t;Δt).

From the numerical point of view, it is obvious that the extent of the memory
kernel K in Fig. 4.2 limits the performance of the KBE solver in two aspects:

(i) the final propagation time tf is limited by the amount of Green’s functions that
can be stored in the random access memory (RAM) of the computer,

(ii) the growing region of time integration in the collision integrals quadratically
slows down the algorithm with time progression.

4.2.2 Parallelization Strategies

In order to soften or to (partly) overcome the above limitations, a reasonable idea
is to use state-of-the-art high-performance computing strategies. In the following,
we want to outline a parallel algorithm based on the steps (4.17), (4.18) and (4.21)
that allows one to efficiently solve the KBEs on multi-processor machines using
practically all available local RAM. This means that we do not require a shared
memory environment.

To describe the parallel algorithm, we, in the following, use the terminology of
the message passing interface (MPI), e.g., Ref. [160]. This means, we launch mul-
tiple copies of one and the same program which are referred to as “processes” or
“ranks”. Parallelization is then achieved by a cooperative action of these copies syn-
chronized through collective or point-to-point communication. When p processes
are started, we label them from 0 to p − 1, and usually process 0 takes over the
function of the master for serial parts of the algorithm that are not (or cannot be)
parallelized.

The main idea of the algorithm is a clever distribution of the 1pNEGF over the
memory of the individual MPI processes. To motivate such an approach, we examine
the collision integrals relevant in Eqs. (4.17) and (4.21) for fixed t∗, t̄ and τ̄ . After
applying the Langreth-Wilkins rules (cf. Table 2.1), we have,

13The averaging is performed separately for each matrix component, i.e., for the self-energy for

example the average is Σ̄
(1),HF
ij (t, t ′) = 1

2 {Σ(1),HF
ij (t, t ′) + Σ

(1),HF
ij (t, t ′ + Δt)} when propagating

in the t ′-direction, cf. also Ref. [80].
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Fig. 4.3 Two-time propagation of the 1pNEGF components. The solid dots mark the real-time (left
panel) and the imaginary-time contributions (right panel) to the collision integrals in Eqs. (4.24)
to (4.26): (a) I

(1),>
1 (t∗, t̄), (b) I

(1),<
2 (t̄ , t∗), and (c) I (1),(t∗, t0 − iτ̄ ). As in Fig. 4.2, the lesser

(greater) correlation function is computed for t ≤ t ′ (t > t ′). Note that the irregular part of the
one-particle self-energy Σ(1)(t, t ′), with t, t ′ ∈ C , functionally depends on, both, G(1)(t, t ′) and
G(1)(t ′, t)

I
(1),>
1

(

t∗, t̄
)=
∫ t∗

t0

dt ′ Σ(1),>−<
irreg

(

t∗, t ′
)

G(1),>
(

t ′, t̄
)

+
∫ t̄

0
dt ′ Σ(1),>

irreg

(

t∗, t ′
)

G(1),<−>
(

t ′, t̄
)

−i�
∫ β

0
dτ ′ Σ(1),

irreg

(

t∗, t0 − iτ ′)G(1),�(t0 − iτ ′, t̄
)

, (4.24)

I
(1),<
2

(

t̄ , t∗
)=
∫ t̄

t0

dt ′ G(1),>−<
(

t̄ , t ′
)

Σ
(1),<
irreg

(

t ′, t∗
)

,

+
∫ t∗

0
dt ′ G(1),<

(

t̄ , t ′
)

Σ
(1),<−>
irreg

(

t ′, t∗
)

− i�
∫ β

0
dτ ′ G(1),(t̄ , t0 − iτ ′)Σ(1),�

irreg

(

t0 − iτ ′, t∗
)

, (4.25)

I (1),(t∗, t0 − iτ̄
)=
∫ t∗

0
dt ′ Σ(1),>−<

irreg

(

t∗, t ′
)

G(1),(t ′, t0 − iτ̄
)

− i�
∫ β

0
dτ ′ Σ(1),

irreg

(

t∗, t0 − iτ ′)G(1),�(t0 − i
(

τ ′ − τ̄
)

, t0
)

,

(4.26)

where the notation X ≷−≶ (X = G(1),Σ(1)) indicates the difference X ≷ − X ≶,
and the mixed Green’s function in the second integral of Eq. (4.26) can be replaced
by the Matsubara Green’s function, cf. Eq. (2.22). In Fig. 4.3, the solid dots mark
the Green’s functions which contribute in these three integrals. While some Green’s
functions enter directly, some are hidden in the one-particle self-energy, see also
the figure caption. Graphically, the latter are located on the edges of the expanding
square (rectangle) in the left (right) panel of Fig. 4.3, cf. the paths AB and BC.
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Computationally, it is highly advantageous when the Green’s functions marked
in Fig. 4.3 are contained in the RAM attributed to the process which performs the
integration. In that case, no Green’s function G(1),≷(t, t ′) and G(1),(t, t0 − iτ) with
past time arguments t, t ′ ≤ t∗ needs to be exchanged between the program copies.
In addition, working in parallel for different t̄ and τ̄ , the individual processes then
can propagate (one after another) the lesser, the greater and the mixed Green’s func-
tion, and the resulting components at t∗ + Δt automatically belong to the correct
memory14, see the arrows labeled (a), (b) and (c) in Fig. 4.3.

The problem remains that the above memory allocation must be realized for
each tuple (t, t ′) and (t, τ ) with t and t ′ ranging from t0 to the final propa-
gation time tf and τ ranging from zero to β . So how can this be achieved?
In the case of two MPI processes, we start with alternately assigning the cor-
relation functions15 to the individual processes, i.e., we make G(1),≷(2nΔt, t ′)
and G(1),≷(t,2nΔt) known to the first process and G(1),≷((2n + 1)Δt, t ′) and
G(1),≷(t, (2n + 1)Δt) to the second process (n = 0,1,2, . . . , (tfΔt−1 −1)/2). Sim-
ilarly, we proceed for the mixed Green’s function. As the τ -grid is generally
not equidistant (compare with Sect. 4.1.2), we first discretize the interval [0, β]
according to τ0 = 0, τ1, . . . , τM−2, τM−1 = β , where M is the number of mesh
points. Then, we assign G(1),(2nΔt, t0 − iτ) and G(1),(t, t0 − iτ2m) to the first
process and G(1),((2n + 1)Δt, t0 − iτ) as well as G(1),(t, t0 − iτ2m+1) to the sec-
ond (m = 0,1, . . . , M

2 − 1). In addition, both processes need to know the Matsubara
Green’s function, cf. the last term in Eq. (4.26). Aside from the Green’s functions
that enter through the self-energies in Eqs. (4.24) to (4.26), we obtain the desired
allocation of memory.

Interestingly, the described memory distribution allows for a parallel precom-
putation of the self-energies as the required Green’s functions are always locally
known. Doing so, at fixed time t∗ and integer n,m with (2n+ 1)Δt ≤ t∗ and (2m+
1) < M , the first process calculates Σ

(1),≷
irreg (2nΔt, t∗) and Σ

(1),
irreg (t∗, t0 − iτ2m),

whereas the second one computes Σ
(1),≷
irreg ((2n + 1)Δt, t∗) and Σ

(1),
irreg (t∗,

t0 − iτ2m+1). The following symmetries apply:

Σ(1),≷(t, t ′
) = −[Σ(1),≷(t ′, t

)]†
,

Σ(1),�(t0 − iτ, t) = [Σ(1),(t, t0 − i(β − τ)
)]†

.

(4.27)

Of course, the obtained values for the 1pSEs must be shared between both processes
before calculating the collision integrals. This is most easily implemented by using
the MPI broadcast function.

Finally, we remark that the time-diagonal time step of Eq. (4.18) is carried out
in sequence with the adjacent time steps in t- and t ′-direction (cf. Fig. 4.2) and that
all newly computed Green’s function components for t∗ + Δt must be transferred

14I.e., they can be stored locally.
15Note that, for t ≤ t ′ (t ′ < t ), we mean the lesser (greater) function.
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Fig. 4.4 MPI parallelization of the numerical solution of the two-time Kadanoff-Baym equations.
Within the gray-shaded area, the individual processes are listed from top to bottom and the se-
quence of execution is from left to right. While communications of process (n modp) are high-
lighted by solid arrows, all remaining communications are indicated by gray dashed arrows. The
loops labeled as (a) and (b) have to be performed for all i ≤ n and all j ≤ M − 1, compare with
steps (iv) to (vi) of the algorithm overview. The final MPI barrier ensures synchronization before
the next time step is initiated

once to the other process (by a point-to-point communication). The latter is a con-
sequence of the fact that the total 1pNEGF (i.e., the final memory kernel for tf)
is effectively stored twice which is the only drawback or compromise of this ap-
proach. On the other hand, the memory distribution enables a well load-balanced
parallelization which gets along with minimum communication overhead.

Furthermore, the generalization to more than two MPI processes is straightfor-
ward. In the case of p processes, the correlation function G(1),≷(t, t ′) must be stored
in the memory of process p1 and p2 with16,

p1 = tΔt−1 modp, p2 = t ′Δt−1 modp, (4.28)

whereas, the mixed Green’s function G(1),(t, t0 − iτm) with m = 0,1, . . . ,M − 1
has to be part of process p3 and p4 where,

p3 = tΔt−1 modp, p4 = m modp. (4.29)

As mentioned before, the Matsubara Green’s function G(1),M must be completely
known to all processes.

To be more comprehensive, we give a short summary of the parallel algorithm
when p MPI processes are involved (for illustration of the required MPI communi-
cations, see Fig. 4.4):

16In the implementation, t and t ′ are multiples of Δt .
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(i) All processes get the kinetic energy (matrix) t (1), the binary interaction w(2),
and the discretized Matsubara Green’s function G(1),M(τm) as input and ini-
tialize a local counter, n = 0.

(ii) Process 0 uses the Matsubara Green’s function to initialize G(1),<(t0, t0), and
G(1),(t0, t0 − iτ) for all τ = τm (m = 0,1, . . . ,M − 1), cf. Eq. (2.22).

(iii) Process (n modp) computes and diagonalizes the effective single-particle en-
ergy h

(1)
eff (t0 + nΔt). Thereafter, it calculates U(t0 + nΔt;Δt) and V (t0 +

nΔt;Δt) of Eqs. (4.16) and (4.19) and sends both quantities to all remaining
processes.

(iv) For all non-negative integers i ≤ n and j ≤ M − 1, process (i modp) com-
putes the self-energies Σ(1),>(t0 + nΔt, t0 + iΔt) and Σ(1),<(t0 + iΔt, t0 +
nΔt) and process (j modM) computes Σ(1),(t0 + nΔt, t0 − iτj ). Each self-
energy computation is followed by a broadcast to all other processes.

(v) For all i ≤ n, as in (iv), process (i modp), first, computes the collision in-
tegrals I

(1),>
1 (t0 + nΔt, t0 + iΔt) and I

(1),<
2 (t0 + iΔt, t0 + nΔt) and, sec-

ond, propagates the correlation functions according to Eq. (4.17). Process
(n modp) additionally undertakes the time-diagonal step of Eq. (4.18). Fur-
thermore, each newly computed correlation function is transferred to process
((n + 1) modp).

(vi) For j ≤ M − 1, as in (iv), process (j modM) computes the collision integral
I (1),(t0 +nΔt, t0 − iτj ) and propagates the mixed Green’s function by using
Eq. (4.21). Similar to v., each newly computed Green’s function is transferred
to process ((n + 1) modp).

(vii) As process (n modp) has knowledge of the current time-diagonal Green’s
function G(1),<(t0 +nΔt, t0 +nΔt) and the corresponding collision integrals,
it is clear that it computes all relevant observables. We note that the correlation
part of the interaction energy is most simply evaluated as,

〈Hcor〉(t) = − i

2
Tr
{

I
(1),>
1 (t, t)

}

. (4.30)

(viii) After synchronization, all processes increment their counter n by one and
return to point (iii).

We mention that a parallel algorithm similar to the one described above has been
independently developed by Garny and Müller, see Ref. [161].

In practice, the parallel KBE solver following steps (i) to (viii) reveals good per-
formance. Figure 4.5 shows the efficiency measured in terms of the speed-up ratio
for three different MPI calculations with up to 512 processes. The speed-up ratio
S(p) = T1/Tp is a measure of the degree of parallelization and compares the total
runtime Tp using p processes to a serial run which requires the duration T1. The test
calculations17 include about 25 spin orbitals and the second Born approximation for
the self-energy of an inhomogeneous quantum system [153]. Overall, the overhead

17The calculations have been performed on the xe and ice1 nodes of the North-German Supercom-
puting Alliance (HLRN) via Grant No. shp0006 (https://www.hlrn.de, retrieved 2011).

https://www.hlrn.de
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Fig. 4.5 Typical algorithm performance: speed-up ratio S(p) = T1/Tp (dots) as function of the
number of MPI processes for two-time NEGF calculations of different length tf. The thick solid
line indicates the case S(p) = p. The thin solid lines refer to the Amdahl’s predictor [162]
S(p) = {(1 − ξ) + ξ/p}−1 at degree of parallelization ξ . Calculations were performed on the
xe and ice1 nodes of the HLRN, see footnote 17

due to communication and synchronization is small leading to a typical degree of
parallelization of more than 95 %. We note that the performance drop in Fig. 4.5 be-
tween p = 4 and 8 is due to architecture differences when using more than 4 central
processing units (CPUs). Thus, for large MPI calculations, the performance may be
even better than indicated.

4.2.3 Single-Time Propagation using the GKBA

From the numerical point of view, the generalized Kadanoff-Baym ansatz (GKBA)
of Eq. (2.70) (Sect. 2.4.2) is very promising. This is because it allows for propa-
gating the 1pNEGF only along the time diagonal (cf. Fig. 4.2) which is computa-
tionally faster18 and requires essentially less memory. Note that the GKBA is for-
mulated in the real-time domain, and a consistent equilibrium version is so far not
known. This inhibits us to self-consistently (on the level of the GKBA) define a
correlated and equilibrated initial state through an equilibrium Dyson equation ac-
cording to Eq. (2.38) or (2.42). Alternatively, the time propagation can start from the
(effectively) non-interacting system. In order to systematically include initial corre-
lations, we then have to resort to the technique of adiabatic switching as outlined in
the introduction of this chapter. In the following, we give details for the NEGF time
propagation under the GKBA. For the reasons mentioned above, we do not explic-
itly treat terms that account for initial correlations since they are included via the
adiabatic switching procedure.

18Though, it still slows down with time progression due to the memory integral, compare with
Eqs. (4.37) and (4.39).
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Once the double-time retarded and advanced propagators G(1),R and G(1),A are
known, the GKBA allows us to use the relation,

G(1),≷(t, t ′
)= i�

{

G(1),R(t, t ′
)

G(1),≷(t ′, t ′
)− G(1),≷(t, t)G(1),A(t, t ′

)}

, (4.31)

in all expressions that require off-time-diagonal Green’s functions. In particular,
it is, therefore, sufficient to use Eq. (4.18) for the time stepping. Writing out the
associated collision integral I

(1),<
12 (t) yields (see Eqs. (4.20) and (4.22) and neglect

initial correlations),

I
(1),<
12

(

t∗
)= I

(1),<
1

(

t∗, t∗
)− I

(1),<
2

(

t∗, t∗
)

=
∫ t

t0

dt̄
{

Σ(1),>
(

t∗, t̄
)

G(1),<
(

t̄ , t∗
)− Σ(1),<

(

t∗, t̄
)

G(1),>
(

t̄ , t∗
)

+ G(1),<
(

t∗, t̄
)

Σ(1),>
(

t̄ , t∗
)− G(1),>

(

t∗, t̄
)

Σ(1),<
(

t̄ , t∗
)}

. (4.32)

In the GKBA scheme, this integral depends on all time-diagonal correlation func-
tions and the double-time retarded and advanced functions. It can also be written
as,

I
(1),<
12

(

t∗
)= I

(1),<
1

(

t∗, t∗
)+ [I (1),<

1

(

t∗, t∗
)]†

. (4.33)

For further simplification, we consider the equations of motion for G(1),R/A,
which we treat on the HF level19:

{

i�
∂

∂t
− h

(1)
eff (t)

}

G(1),R/A(t, t ′
)= δC

(

t − t ′
)

,

and the adjoint Eq. with t ↔ t ′,
(4.34)

where h
(1)
eff (t) = h(1)(t) + Σ(1),HF(t) is defined as introduced in Sect. 4.2.1. When

the time dependence of the effective single-particle energy is determined outside of
Eq. (4.34) [in practice, we evaluate it using the 1pRDM ρ1(t) = −i�G(1),<(t, t)]
the solution reads,

G(1),R/A = ∓iθC
(±[t − t ′

])

Y (1)
(

t, t ′
)

, (4.35)

with,

Y (1)
(

t, t ′
) = exp

(

− i

�

∫ t

t ′
dt̄ h

(1)
eff (t̄)

)

,

Y (1)
(

t, t ′
) = [Y (1)

(

t ′, t
)]†

(∗),

Y
(1)
ij (t, t) = δij .

(4.36)

Inserting Eqs. (4.31) and (4.35) in Eq. (4.32) leads to,

19To consider them in the presence of correlations would lead to equations of motion that are as
difficult to solve as the full two-time KBEs.
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Fig. 4.6 Time propagation of the 1pNEGF using the GKBA. The reconstruction (4.31) allows for
a propagation along the time diagonal, see arrow (a). In terms of Y (1)(t̄ , t∗) (dots), the retarded and
advanced Green’s function can be obtained recursively, cf. Eq. (4.38) and arrow (b). At points A
and B, Y (1) is just the unit matrix, cf. Eq. (4.36)

I
(1),<
12

(

t∗
)

=
∫ t

t0

dt̄
{[

Σ(1),>
(

t∗, t̄
)

G(1),<(t̄ , t̄ ) − Σ(1),<
(

t∗, t̄
)

G(1),>(t̄ , t̄ )
]

Y (1)
(

t̄ , t∗
)

+ Y (1)
(

t∗, t̄
)[

G(1),<(t̄ , t̄ )Σ(1),>
(

t̄ , t∗
)− G(1),>(t̄ , t̄ )Σ(1),<

(

t̄ , t∗
)]}

. (4.37)

Of course, in the same line of action, one has to evaluate the two-time self-energies
for a given MBA.

In the implementation of the GKBA, we use symmetry (*) of Eq. (4.36) and
need to know the quantity Y (1)(t̄ , t∗) for all times t̄ ≤ t∗. For progressed time prop-
agation, this means the execution of a rather large number of diagonalizations of
the effective single-particle Hamiltonian in a single time step. This would be un-
favorable for calculations that require a large spin-orbital basis. To our advantage,
Y (1) obeys a simple recurrence relation when the time step Δt is sufficiently small
(t̄ ≤ t∗):

Y (1)
(

t̄ , t∗
)= exp

(
i

�

∫ t∗−Δt

t̄

dt ′ h(1)
eff

(

t ′
)+ i

�

∫ t̄

t∗−Δt

dt ′ h(1)
eff

(

t ′
)
)

= exp

(

− i

�

∫ t̄

t∗−Δt

dt ′ h(1)
eff

(

t ′
)+ i

�
h

(1)
eff

(

t∗ − Δt
)

Δt

)

= Y
(

t̄ , t∗ − Δt
)

U†(t∗ − Δt;Δt
)

. (4.38)

To arrive at the last equality, we have used the Baker-Campbell-Hausdorff formula

(exp (a + b) = eaebe− 1
2 [a,b]− , in which the commutator vanishes) and have identi-

fied the time-evolution operator of Eq. (4.16).
With Eq. (4.38), we avoid many successive diagonalizations of the effective

single-particle Hamiltonian and can straightforwardly construct the new retarded
or advanced Green’s function which enter the collision integral (4.37), see Fig. 4.6.
As a result, the GKBA scheme requires the propagation of the lesser correlation
function along the time diagonal according to Eq. (4.18) and the simultaneous time
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Fig. 4.7 Typical
performance of a GKBA
calculation compared to the
full two-time scheme of
Sect. 4.2.1. Whereas for
two-time calculations, the
runtime scales as T 3 with T

being the number of time
steps, it is reduced to a
quadratic scaling when using
the GKBA. The data
represent serial 2B
calculations with identical
parameters. Figure after
Ref. [113]

stepping of the quantity Y (1). For the latter, we have to evaluate (compare with
Eqs. (4.36) and (4.38)),

Y (1)
(

t̄ , t∗ + Δt
)= Y

(

t̄ , t∗
)

U†(t∗;Δt
)

, (4.39)

for t̄ ≤ t∗, whereas, along the time diagonal, it is,

Y
(1)
ij

(

t∗ + Δt, t∗ + Δt
)= δij . (4.40)

Compared to full two-time calculations, the GKBA propagation is not only mem-
ory friendly, but also will be essentially faster. This is because one propagates the
1pNEGF exclusively in the direction of the time diagonal and, with Eqs. (4.39)
and (4.40), an efficient treatment of the memory kernel is possible. Figure 4.7 shows
a comparison between a typical GKBA and the corresponding full two-time calcu-
lation as function of the number of time steps T propagated, cf. Ref. [113]. As
expected, the runtime of the full calculation (dash-dotted line) scales like T 3 in the
long-time limit. On the contrary, the use of the GKBA allows for a much faster time
evolution and leads overall to a runtime which saturates at a beneficial T 2-behavior;
see the dashed line, which indicates an about two orders of magnitude smaller total
runtime below T = 103 and an even larger speedup for T > 103.
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Applications for Inhomogeneous Systems



Chapter 5
Lattice Systems

This chapter aims at giving a brief overview on the current status of Kadanoff-Baym
approaches to lattice systems. To this end, we address the most relevant literature1

and, as a basic example, show NEGF results for a Hubbard-type dimer.
As “lattice” systems, we generally denote quantum many-body systems where

the particle motion is restricted to a finite or infinite set of localized sites in coor-
dinate space. Prominent examples can be found in condensed matter systems and
include, for example, the electron dynamics between the 3d (and/or 4f) orbitals in
transition metal oxides—for respective LDA+U calculations2 see, e.g., Ref. [163].
However, the “lattice” sites need not necessarily be arranged in form of a well de-
fined grid (i.e., on a real lattice described by a specific unit cell). Instead, also other
nanoscale systems can directly be described by lattice-type Hamiltonians. Among
these systems are, e.g., molecular junctions, small carbon nanotubes and wires, or
atomic size point contacts.

Theoretically as well as computationally, lattice systems can usually be described
by a small set of parameters. This is due to the fact that the interaction between the
charge carriers is typically short-ranged such that one can confine oneself to a purely
local and (or) nearest-neighbor interaction. Furthermore, a specific hopping ampli-
tude3 (resembling the kinetic energy) is often sufficient to describe the movement
of the particles from one lattice site to another.

1We mainly focus on papers, that apply specific many-body approximations to the KBEs and, for
example, do not cover dynamical mean-field theory-based works. For an overview in this direction,
see Refs. [42, 164] and references therein.
2While LDA means “local-density approximation”, the parameter U indicates a purely local
Hubbard-type interaction, cf. Sect. 5.2.
3The hopping amplitude is related to the overlap between the one-particle orbitals on different
lattice sites.

K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to
Inhomogeneous Systems, Lecture Notes in Physics 867,
DOI 10.1007/978-3-642-35082-5_5, © Springer-Verlag Berlin Heidelberg 2013
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5.1 Overview

The application of the Keldysh-Kadanoff-Baym formalism to the description of lat-
tice systems in nonequilibrium to date mainly concerns the zero-temperature limit
and small systems with a low number of single-particle states.

To give a chronological overview, we first mention Ref. [165], where the Kondo
effect and the zero-temperature transport properties of the Anderson impurity model
have been studied on the level of the GW approximation by Thygesen and Rubio.
Thereafter, the current-voltage (IV ) characteristics of a generic two-level system
coupled to wide-band leads has been investigated in detail in Ref. [166]. Here, be-
yond the HF level, the inclusion of correlations in the 2B and GW approximation
has led to an essential shift of the conductance peaks and an additional asymmetry
in the peak profiles. As the responsible mechanism one has exposed the broadening
of the spectral function and the closure of the energy gap between the occupied and
unoccupied states.

In order to study the quantum transport through double quantum dots and to ad-
dress the influence of initial correlation and memory effects on the transient dynam-
ics, the KBEs have then been solved by Myöhänen et al. in Ref. [167]. Extensions to
larger system sizes and other quantities such as transient currents, dipole moments,
spectral functions and charging times have been presented by the same authors in
Ref. [168]. Furthermore, applications including AC and DC fields are subject to
Ref. [169], and generalizations to superconducting leads can be found in the work
of Stefanucci et al. [76].

In parallel with the study of quantum transport phenomena, there have appeared
works by Puig von Friesen et al. on small 1D Hubbard nanoclusters [85, 170], where
non-linear effects have been studied including the HF, 2B, GW and TM approxima-
tion. There, the main focus has been on the spectral functions, the density response
to an external perturbation and the appearance of damping and (multiple) steady
states. Throughout, many effects were found to be best described within the TM
approximation. Further, in Ref. [171], Verdozzi et al. have performed real-time 2B,
GW and TM calculations on a small 3D cubic cluster to benchmark time-dependent
density functional theory (TDDFT) results based on the non-perturbative adiabatic
local-density approximation (ALDA). Particularly for fast perturbations, the authors
have noted that NEGF results are clearly superior to the ALDA due to the inclusion
of non-local and non-adiabatic effects.

Thereafter, a thorough comparison of many-body perturbation theory, time-
dependent density-matrix renormalization group (TDDMRG) and TDDFT has been
presented in Ref. [172] for the Anderson model under nonequilibrium conditions.
Moreover, an interesting direction has been the description of double excitations in
the Kadanoff-Baym framework, cf. also Sect. 6.2.2. Respective work in the context
of a Hubbard-Hamiltonian and its extensions is subject to Ref. [173] and includes
the response function and addition and removal energies analyzed within different
conserving MBAs. Furthermore, NEGFs have been applied also to investigate the
image charge dynamics in quantum transport. In Ref. [174], surface polarization
effects such as the dynamical formation of image charges at the dot-lead interface
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have been studied in detail. Also, it has been concluded that correlations prevent
plateaus in the IV -curves and correct the absence of relaxation processes observed
in HF-type solutions. Very recently, in Ref. [175], it has been shown for interacting
nanoscale junctions that dynamical correlations suppress the presence of multista-
bility in observables such as the density or the current.

In many of the above-mentioned works, more or less serious limitations of the
Kadanoff-Baym approach and unphysical effects have been detected. These in-
clude self-interaction errors, the presence of infinite number of poles in the spectral
function4, spurious dynamical excitations and artificial correlation-induced damp-
ing leading to steady states. Basically, all these effects can be attributed to the ap-
proximate treatment of the one-particle self-energy. Along these lines, it has in par-
ticular been shown that also correlation functions (as, e.g., the double occupancy
in Hubbard-type systems) can violate important properties such as positiveness. In
Ref. [176], it is demonstrated that this is the case for 2B and GW but not for the
T-matrix approximation.

5.2 A Basic Example

As an elementary example of a lattice model, we consider an isolated two-site Hub-
bard cluster at half-filling5 obeying the dimensionless Hamiltonian,

Ĥ =
∑

σ=↑,↓

(−t
{

f̂
†
1,σ f̂2,σ + f̂

†
2,σ f̂1,σ

}+ v(t) n̂1,σ

)+ U
∑

i=1,2

n̂i,↑n̂i,↓, (5.1)

with the spin-density operator n̂i,σ = f̂
†
i,σ f̂i,σ and the on-site interaction U (Hub-

bard U ) which penalizes double occupancy of the same site. The first two terms
describe the hopping of electrons from the first to the second site and vice versa. On
site i = 1, we will later apply a spin-independent but time-dependent perturbation
of the form v(t) n̂1,σ .

The ground and excited states of the system (5.1) are known analytically, e.g.,
Ref. [177]. For the hopping amplitude t = 1, they are shown in Fig. 5.1 as function
of the Hubbard U . Here, the ground-state energy is well described in the 2B ap-
proximation, see the dots. On the contrary, the HF approximation indicates a wrong
linear U -dependence. In the limit U → ∞, the eigenstates E− and E0 as well as EU

and E+ are degenerate. Moreover, the energy gap (see the arrow) increases linearly
with the Hubbard U such that the system becomes insulating at large coupling.

4Although the exact finite lattice system has a finite number of poles.
5There is one up- and one down-spin electron in the system (N = N↑ + N↓ = 2).
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Fig. 5.1 Ground-state (E− = U
2 −√U2/4 + 4t2) and excited-state energies (E0 = 0, EU = U

and E+ = U
2 +√U2/4 + 4t2) of the two-site Hubbard model at half-filling and t = 1 for different

parameters U , cf. [177]. Whereas the HF approximation (dashed line) leads to a linear dependence
of the ground-state energy on U , the 2B approximation (dots) well approaches the exact result. The
indicated main energy gap is equal to the Hubbard U . In the limit U → ∞, E− and E0 as well as
EU and E+ become degenerate

5.2.1 Dynamics Following a Non-Perturbative Excitation

In this Section, we examine the dynamics of the two-site Hubbard model (5.1) fol-
lowing a non-linear perturbation. To this end, we consider v(t) being proportional
to a step function, i.e.,

v(t) = v0θ(t − t0), (5.2)

with a variable amplitude v0. We note that this case has also been investigated by
Puig von Friesen et al. in Ref. [170].

In Fig. 5.2(a) to (c), we show the local density response of the system,

〈n̂1〉(t) = −2i�G(1),<
11 (t, t), (5.3)

for different many-body approximations and amplitudes ranging from v0 = 0 to
5. The total density 〈n̂1〉 + 〈n̂2〉 is constant, being normalized to N = 2, and we
have used the spin degeneracy factor ξ = 2 as introduced in Sect. 3.3.4. In the case
of weak perturbations, v0 < 1, all three panels show the same behavior: The lo-
cal density starts to oscillate and indicates a temporal depopulation of the first site
(the stronger the perturbation, the larger the depopulation). In addition, with in-
creasing v0, the characteristic time period of this oscillation decreases. However,
in the regime of moderate to strong excitations, v0 > 1, the three calculations yield
completely different results. While the HF solution in panel (a) indicates a perma-
nent oscillation of 〈n̂1〉(t), the inclusion of correlations in the 2B approximation in
panel (b) leads—for sufficiently large amplitudes v0 � 2.5—to damped solutions
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Fig. 5.2 Density response of
the two-site Hubbard cluster
of Eq. (5.1) at U = 1
following a perturbation
acting only on the first site for
t ≥ t0 = 0. (a) Hartree-Fock
(HF) approximation,
(b) second Born (2B)
approximation and (c) GKBA
with 2B kernel. While, in (a)
and (c), the density performs
an undamped oscillation, in
panel (b), the density is
strongly damped for v0 � 2.5
leading to an unphysical
steady state, compare with
Ref. [170]

where finally a steady state is reached which is characterized by a low electron den-
sity on site i = 1. As such a behavior is not observed when the model is solved
exactly, see Ref. [170], it is clearly an artifact of the many-body approximation
(MBA) used6. On the other hand, in Fig. 5.2(c), we observe that damped solutions
are not obtained when one applies the generalized Kadanoff-Baym ansatz7 (GKBA),
cf. Sect. 2.4.2. Here, the use of HF propagators in the retarded and advanced Green’s
functions apparently prevents steady states though correlations are included on the
2B level.

Figure 5.3 compares approximate and exact results for 〈n̂1〉(t) in the limit of
large v0. As seen before, in contrast to HF (dashed line), the 2B result (solid line) is

6We emphasize that energy and particle number conservation is fulfilled at all times.
7The GKBA data are provided by S. Hermanns (University Kiel) [178].
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Fig. 5.3 Density response of the two-site Hubbard cluster at U = 1 and v0 = 5 for HF, 2B and
GKBA. Note that the damping in 2B approximation does not depend on the initial state, compare
the dash-dotted and the solid line. The exact data (dots) is adapted from Ref. [170]

strongly damped and reaches a steady state after about six oscillations. Neither the
damping constant nor the final site occupation however depend on the approximate
treatment of the initial state, compare the solid and dash-dotted curves which refer
to the self-consistent and HF initial state, respectively, and which practically lie on
top of each other. Hence, the damping in 2B is clearly a dynamical phenomenon.
Moreover, it is found that the GKBA result (see the thin dotted line) is overall rea-
sonably close to the exact one and does not reveal damping. However at specific
points in time, it seems to mimic the HF result, see the arrow.

Formally, the correlation-induced damping observed in Figs. 5.2(b) and 5.3 can
be attributed to the fact that a MBA is usually based on partial summations of
MBPT diagrams which include terms of all orders. This means, there may exist
terms which only compensate each other in an exact description of the problem.
The non-compensating terms can then simulate effective bath states although the
system is actually finite and isolated [85]. In other words, the MBA can artificially
increase the phase space and, hence, facilitates artificial damping.

Finally, what remains an interesting point is the relatively sharp transition be-
tween the undamped and damped parameter regime in panel (b). A simple explana-
tion of this fact is still missing.

5.2.2 Absorption Spectrum in Second Born Approximation

In the previous section, we have analyzed the two-site Hubbard cluster beyond the
linear regime and have identified the emergence of artificial steady states. However,
also in the linear regime, care must be taken when using a Kadanoff-Baym approach.
To demonstrate this, we now compute the excitation spectrum of the same Hubbard
cluster by propagating the NEGF in real time. As a small perturbation we consider,

v(t) = v0δ(t − t0), (5.4)

in Eq. (5.1) and set v0 � 1; typically v0 = 0.01.
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Fig. 5.4 Approximate linear-response excitation spectrum 〈n̂1〉(ω) of the two-site Hubbard cluster
for different U . The thick vertical lines indicate the exact excitation energies of transition A, B and
C, respectively. Note that only transition B exists for the perturbation introduced by Eqs. (5.1)
and (5.4). In 2B approximation, the energy of the single excitation B is generally superior to HF,
see the upper-most panel (U = 1.0). However for small and large U , there appear additional,
unphysical excited states not observed in the exact solution of the problem, compare also with
Ref. [178]. We emphasize that the width of the HF and 2B peaks is determined by the limited
length of the time propagation

From the exact diagonalization data (recall Fig. 5.1), we know that there exist
three excited states in the system with energy E0, EU and E+. This means, we may
expect three ground-state transitions:

E− → E0 (below called A),

E− → EU (called B), (5.5)

E− → E+ (called C).

However, it is easily shown that only transition B with excitation frequency ω =
EU − E− (�= 1) has a non-vanishing transition moment for the perturbation intro-
duced in Eq. (5.1), i.e., for a linear coupling of the time-dependent field v(t) to the
electron density on the first site. Furthermore, transition B represents a single elec-
tron excitation and therefore—in contrast to a double excitation8—does not require
a correlated treatment of the system. As a consequence, it should appear already in
a mean-field description of the spectrum9.

Figure 5.4 shows the linear response spectrum,

〈n̂1〉(ω) =
∫

dt e−iωt 〈n̂1〉(t)|v0�1, (5.6)

for the case of U = 0.25, 0.5 and 1.0 in HF and 2B approximation.

8A double excitation is a correlation-induced process where two electrons are excited simultane-
ously.
9For a more detailed discussion on single and double excitations, see Sects. 6.2.1 and 6.2.2.
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First, we notice that, as expected, the single excitation B is well resolved in both
results. Particularly for larger U , the 2B approximation accounts for most of the
correlation-induced shift towards a larger excitation energy, cf. the vertical line B
in the upper-most panel of Fig. 5.4. On the other hand, for U = 0.25, we observe
that the second Born approximation seems to reproduce also the transition A which
promotes the system into the first excited state of energy E0. If we consider the
cases U = 0.5 and U = 1.0, however, the identification of this transition becomes
subtle. Here, the relevant peak shifts to a larger frequency which is opposite to what
is expected from exact diagonalization, cf. the vertical line labeled A. In addition,
there is a second peak forming which is located about the expected position but has
a rather small spectral weight (see the arrows).

As there is—independently of the value of the Hubbard U—no evidence for
transitions other than B in the exact excitation spectrum, we clearly have to identify
the additional peaks obtained in the 2B approximation as unphysical artifacts. With
the same argument, we also have to rule out the series of high-energy states, see
5.5 < ω < 7.5 in all panels of Fig. 5.4.

The origin of these artifacts is most probably the same as for the damping found
in the previous Section, i.e., the non-cancellation of terms in the applied many-body
approximation. A more detailed analysis of the artificial states in Fig. 5.4 including
their U -dependence and oscillator strength is subject of ongoing work.



Chapter 6
Non-Lattice Systems

As “non-lattice” systems we refer to all finite, inhomogeneous quantum many-body
systems that cannot be described a priori by a lattice-Hamiltonian with strongly
localized (one-particle) states. This means, we deal with systems the particle den-
sity of which is predominantly a continuous function in space1. Usually, the general
form of this density crucially depends on two parameters: the external confinement
potential and the interaction between the particles. As outlined in Sect. 3.2, an ade-
quate basis representation of the NEGF is required to accurately resolve changes in
the continuous particle density.

As representative examples of non-lattice systems we, in this chapter, consider
small (model) atoms and molecules and electrons in quantum dots or wells. We
present Green’s function calculations for the correlated ground states and analyze
the nonequilibrium dynamics induced by weak and strong time-dependent external
perturbations. In Sect. 6.2.2, we, in particular, address a NEGF approach to the
description of excitations which are of multi-particle character. Precisely, we will
focus on double excitations in few-electron quantum wells.

6.1 Small Atoms and Molecules. Ground State Properties and
Response to External Fields

In atomic and molecular physics [179], it is convenient to use atomic units (a.u.).
Here, the characteristic length scale is the electron Bohr radius,

a0 = 4πε0�
2

me2
= �

αmc
, (6.1)

with ε0 = 8.854 · 10−12 F/m being the dielectric constant, m = 9.109 · 10−31 kg
(e = 1.602 · 10−19 C) the electron mass (charge), α−1 = 4πε0/e

2 ≈ 137 the inverse

1We note that there also may exist discontinuities which are induced by boundary conditions or
other constraints.
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fine structure constant, and c = 2.998 ·108 m/s the vacuum speed of light. One Bohr
radius is equivalent to approximately 0.529 Å. Energies are measured in units of
Hartree,

Eh = e2

4πε0a0
= α2c2m, (6.2)

where 1Eh corresponds to about 27.2 eV which is twice the Rydberg energy,
Er ≈ 13.6 eV—the binding energy of the 1s-electron in the hydrogen atom. Using
definition (6.2), the time is consequently measured in multiples of �E−1

h , i.e.,

τ0 = �

α2c2m
= 16π2ε2

0�
3

me4
, (6.3)

and the velocity in αc. One atomic unit of time hence equals 24.2 attoseconds.
In general, all definitions and equations given in the international system of units2

are transferred into atomic units by setting � = m = e = (4πε0)
−1 = 1. Conse-

quently, the mass of the proton (1.673 · 10−27 kg) is 1836 a.u.

6.1.1 Model-Like Treatment

In this section, we will adopt the restriction that the electrons inside an atom or
a molecule move only along one axis [180]. In principle, this means a drastic ab-
straction neglecting, e.g., the system’s angular momentum or ro-vibrational degrees
of freedom. As a consequence, applications and theory-experiment comparisons
are limited. However, the simplicity of such a one-dimensional approach has al-
lowed for a large number of numerical and ab-initio investigations of one- and two-
electron problems in atomic physics. To name only a few, we refer to the study
of photoelectron spectra of the hydrogen atom [181–183], extensive work on the
one-dimensional helium atom, e.g., Refs. [180, 184–187], including electron rescat-
tering and nonsequential ionization in strong laser fields [188] as well as ion-recoil
spectra [189], and the modeling of pump-probe scenarios with enhanced double
ionization following a shake-up state population, see Ref. [41]. The theoretical
tools used vary from semi-classical approaches [190], via time-dependent extended
HF [191], density functional theory (DFT) [192, 193], and multiconfiguration ex-
pansions [194] to the full numerical solution of the two-electron time-dependent
Schrödinger equation (TDSE).

The success of 1D model atoms has also stimulated the description of molecules
in reduced dimensionality. A number of publications, e.g., Refs. [195–197], deal
with the hydrogenic molecules H2 and H3 and their positive ions exposed to intense
fields. In addition, there also exist semi-classical studies [198–200]. On the other
hand, the coupling of the electron dynamics in hydrogen to quantized photon fields

2SI units, SI: Système International d’unités.
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is subject to Ref. [201]. More complex molecules are treated with time-dependent
multiconfiguration HF, e.g., [16, 202, 203], and DFT [204].

Computationally, a one-dimensional description of atoms (molecules) is prob-
lematic due to the Coulomb singularity. To avoid divergences in 1D, we, in the fol-
lowing, use the method of regularization (we emphasize, that different approaches
exist, see, e.g., Refs. [205, 206]). To this end, a harmonic cutoff is assigned to the
Coulomb potential between electrons (+) or an electron and a proton (−) at small
distances xij = xi − xj . Mathematically, this is achieved by replacing,

± 1

|xij | → ± 1

{x2
ij + κ}1/2

≈ ± 1

κ1/2
∓ 1

2κ3/2
x2
ij + O

(

x4
ij

)

(for |xij | � 1), (6.4)

with the softening (or regularization) parameter κ . At large differences, the long-
range x−1

ij -behavior is retained.
In 1D, an atomic or molecular system can then be described by the following

electronic Hamiltonian (a.u.),

Ĥ (t) =
N
∑

i=1

(

−1

2

∂2

∂x2
i

+ E(t) xi −
M
∑

j=1

Zj

{(xi − sj )2 + κj }1/2

)

+
N
∑

i<j

1

{(xi − xj )2 + κ}1/2
, (6.5)

which includes an external, time-dependent (laser) field E(t) = − ∂Ax(t)
∂t

which is
linearly polarized in x-direction and treated classically in dipole approximation3.
The integer N counts the number of electrons with coordinates xi (i = 1,2, . . . ,N ),
and the integer M refers to the number of nuclei which are assumed as point-like
particles located at positions sj (j = 1,2, . . . ,M) and have the atomic number (pos-
itive charges) Zj . As outlined above, the parameter κ (κj ) regularizes the electron-
electron (electron-nucleus) interaction. For a single neutral N -electron atom, it is
M = 1 and Z1 = N . On the other hand, if M > 1 and N = M , the Hamiltonian
describes a neutral molecule. Moreover, if we set N < M or N > M , we can model
the corresponding (molecular) ions.

While for atoms the relevant energy is the electronic part Ee = 〈Ĥ (t)〉, for
molecules, it is the binding energy Eb, i.e., the sum of Ee and the total Coulomb
repulsion energy of the nuclei:

Eb = Ee +
M
∑

i<j

Zi Zj

db,ij

, (6.6)

3Ax(t) denotes the x-component of the vector potential.



86 6 Non-Lattice Systems

where db,ij = |si −sj | are the bond lengths between the individual atoms. Of course,
any molecular ground state is characterized by the global minimum of Eq. (6.6)
including variation of the nuclear geometry.

In terms of the 1pNEGF, the regular HF self-energy4 Σ(1),HF(t) and the respec-
tive collision term I

(1),>
1 of Sect. 4.2.2 (which includes the irregular parts), the elec-

tronic energy is given by,

Ee = E0 + EHF + Ecor, (6.7)

where,

E0 = −i�Tr
{

h(1)(t)G(1),<(t, t)
}

,

EHF = − i�

2
Tr
{

Σ(1),HF(t)G(1),<(t, t)
}

, (6.8)

Ecor = − i�

2
Tr
{

I
(1),>
1 (t, t)

}

,

and, in the one-electron energy h(1)(t) = t (1) + v(1)(t), the potential energy has the
form v(1)(t) = E(t) x −∑M

j=1 Zj {(x − sj )
2 + κj }−1/2.

The degree of electron-electron correlation in the model atom or molecule can
be expressed by means of the correlation energy, which is the difference of the
exact and the HF total energy, i.e., Eexact − E∗

HF, where E∗
HF = E0 + EHF indicates

the result of a pure mean-field calculation. In a nonequilibrium Green’s function
approach beyond the HF level, this value must be compared to the approximate
correlation energy Ecor of Eq. (6.7).

Other important observables are, e.g., the (field-induced) time-dependent dipole
moment,

d(t) = −i�
∫ +∞

−∞
dx
{

(x − s0)G(1),<(x t, x t)
}

, (6.9)

with s0 = 1
M

∑M
j=1 sj as point of reference, and the one-electron density,

ρ1(x, t) = −i�G(1),<(x t, x t). (6.10)

In equilibrium, we replace the lesser correlation function in Eqs. (6.9) and (6.10) by
the Matsubara Green’s function5, i.e., G(1),<(x t0, x

′ t0) = i
�
G(1),M(x, x′;0−).

In the form of Eq. (6.5), the model Hamiltonian involves a rather large number of
parameters. In principle, the numerical values of κj and κ should be chosen such that
roughly the ground-state binding energies, bond lengths and ionization potentials of
the corresponding 3D system are recovered. However, in the examples to be dis-
cussed below, we consider the uniform case κj = κ = 1 for all j = 1, . . . ,M . This
choice is well motivated for the one-dimensional helium atom, cf. [180], leading
to a first (second) ionization potential of 0.755Eh (2.238Eh) compared to 0.904Eh

4Without the contour delta function.
5Recall definition (2.39).
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Table 6.1 1D helium model: typical convergence of the ground-state energy Ee as function of the
number of τ -grid points (nτ ) used in the NEGF calculation. Energies are in units of Eh, cf. Eq. (6.2)

nτ = 101 nτ = 301 nτ = 601 nτ = 1001

2Ba −2.23 −2.2334 −2.23341 −2.233419

aValues from Ref. [207]

(2.903Eh) of the real atom [37]. Moreover, this choice is also commonly used for
other atoms and molecules, see, e.g., Ref. [196].

To start with, we report on the ground-state properties of some representative
model atoms and molecules. All NEGF calculations have been carried out using the
finite element-discrete variable representation (FE-DVR) introduced in Sect. 3.3.
This means, the 1pNEGF and the 1pSE are expanded as (X = G,Σ ),

X (1)
(

x t, x′ t ′
)=
∑

μν

χμ(x)χν(x)X (1)
μν

(

t, t ′
)

, (6.11)

with multi-indices μ = (i,m), ν = (i′,m′) and the one-dimensional FE-DVR func-
tions χμ(x) = χi

m(x), cf. Eq. (3.16). Computationally highly advantageous is the

FE-DVR, because it leads to a simple and analytical structure of the self-energy Σ
(1)
μν

as summarized in Sect. 3.3.4 for the HF and 2B approximation. For self-consistently
solving the Dyson equation, cf. Eqs. (4.11) and (4.12), about nb = 150 FE-DVR ba-
sis functions and up to about 1000 non-equidistant τ -grid points have been used,
compare with Sect. 4.1.2. To describe the ground state, we set β = 100E−1

h . Exact
reference data is computed from the time-dependent Schrödinger equation (TDSE)
using the method of imaginary time-propagation [209].

First, let us concentrate on the most elementary closed-shell, two-electron atom:
helium (He), which is modeled by Eq. (6.5) with N = 2, M = 1 and Z1 = 2. In
a HF approach, the singlet ground state is described by a single doubly-occupied
orbital (of energy −0.750Eh) and has a total energy of Ee,HF = −2.224210Eh. By
contrast, in the 2B approximation, we obtain a lower ground-state energy of Ee,2B =
−2.233419Eh [207] which complies with the Rayleigh-Ritz minimum principle.
When comparing these values to the exact TDSE result of Ee = −2.238258Eh, we
find that 2B accounts for more than 60 % of the correlation energy.

Whereas, in HF approximation, an accurate ground state is simple to generate,
it is more difficult in the case of 2B. This is due to the non-analytic τ -dependence
of the Matsubara Green’s function G

(1),M
μν (τ ) when the self-energy has an irregular

part, compare Eq. (4.11) to the HF-type solution outlined in Eq. (4.10). Table 6.1
shows the 2B convergence of the helium ground-state energy for a typical uniform-
power mesh with nτ grid points (for the mesh’s definition and specific parameters,
the reader is referred to Ref. [207]). Moreover, the typical convergence with the
number of finite elements and Gauss-Lobatto points in the FE-DVR description is
illustrated in Ref. [210].

Beyond helium, the next complicated closed-shell atom is beryllium (Be) involv-
ing four electrons (N = 4) and a four-fold charged nucleus (M = 1, Z1 = 4). The
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Table 6.2 Ground-state (binding) energies of the one-dimensional model atoms (molecules) in
units of Eh. For the molecules, the value in brackets indicates the interatomic bond length db
measured in multiples of the associated Bohr radius a0, cf. Eq. (6.1)

He Be H2 H+
3 LiH

HF −2.2242 −6.7394 −1.3531 (1.9925) −1.4710 (2.1827) −4.8534 (3.3860)

2B −2.2334 −6.7714 −1.3740 (2.0561) −1.5035 (2.2790) −4.8886 (3.5053)

Exact −2.2383a −6.7852b −1.391 (2.151) −1.5324 (2.385) −4.91 (3.6)

aSee, e.g., Ref. [180]
bFrom Ref. [208]

Fig. 6.1 Exact and approximate binding energy curves, i.e., Eb as function of interatomic distance
db, for the models of hydrogen (Hs

2: singlet, Ht
2: triplet), the molecular ion H+

3 and lithium hydride
(LiH). Note that, for H+

3 , db measures the distance between both outermost hydrogen atoms (we
assume equal H-H spacings), and that, for LiH, the curve is shifted upwards by 3Eh. The thresholds
for complete fragmentation—the dissociation thresholds—are given by the thin horizontal lines
labeled (a) and (b)

corresponding HF, 2B and exact ground-state energy are listed in Table 6.2 together
with results for molecular hydrogen (H2: N = M = 2, Z1,2 = 1), the heteronuclear
molecule lithium hydride (LiH: N = 4, M = 2, Z1 = 3, Z2 = 1) and the linear
version of the molecular ion H+

3 (N = 2, M = 3, Z1,2,3 = 1).
For the beryllium atom, the improvement of the HF result, due to correlations

in 2B approximation, is similar to that of the helium atom—however, the correla-
tion energy is more than three times as large. Concerning the molecules, whether
or not the individual atoms combine into molecules depends on the binding energy
Eb, cf. Eq. (6.6). Figure 6.1 shows the respective binding energy curves as calcu-
lated from the repeated solution the Dyson equation (and the TDSE) varying the
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interatomic distance(s). In fact, independently of the used MBA, all considered 1D
molecules are electronically stable, i.e., the binding energy has a clear minimum
which defines the equilibrium bond length db (for numerical values, see the num-
bers in brackets in Table 6.2). In addition, the 2B result is systematically lower than
HF and correctly leads to larger bond lengths. However, there is a problem regard-
ing dissociation: While the TDSE predicts reasonable dissociation thresholds (see
the thin horizontal lines in Fig. 6.1), which coincide with ground-state calculations
on the fragments, the dissociation process is poorly resolved in HF and 2B. This is
due to the fact that all considered molecules have a (singlet) closed-shell configura-
tion in their ground states but dissociate into open-shell fragments, i.e., individual
neutral or charged atoms. Such a transition cannot be captured in a semilocal (spin-
restricted) ansatz for the Green’s function6. For an early discussion on this topic,
see, e.g., Löwdin [211]. Furthermore, this problem does not occur for spin-polarized
systems, compare with the Hydrogen in the triplet state (Ht

2) in Fig. 6.1. There, the
binding energy behaves correctly in the limit db → ∞ but, as expected, no bond is
formed.

The approximate and exact one-electron ground-state densities of the model
atoms and molecules of Table 6.2 are shown in Fig. 6.2(a) and (b). In regions of
high density, we observe that the electron densities for H2, H+

3 and LiH as obtained
in different MBAs differ essentially more than that of the atoms—for He and Be,
the deviation from the exact density is relatively small. However, throughout, the
2B approximation (solid lines) leads to a systematic improvement of the HF result
(dashed lines). For lithium hydride, the agreement with the exact density (dots) is
even very good.

Furthermore, Fig. 6.2(c) illustrates the regularized ionic potentials as created by
the nuclei. For the molecules, these depend on the used MBA which is a result of
the self-consistent determination of the bond lengths, cf. Fig. 6.1. Nevertheless, this
dependence is small such that the following conclusion can be drawn: The density
differences are mainly correlation-induced and are not a consequence of an inaccu-
rate (too small) bond-length. Hence, we also find that an N -electron molecule in 1D
is, in general, more strongly correlated than the corresponding atom with the same
number of electrons. For a more detailed analysis of the molecular ground states in
terms of natural orbitals and their HF (2B) occupations, we refer to Ref. [207].

In order to give an idea of a typical Green’s function calculation in nonequilib-
rium, we now focus on the electron dynamics in the 1D helium atom. First, we will
see how the neglect of self-consistency regarding initial correlations affects the time
evolution. Second, we will trace the electron dynamics following an instantaneous
switch-on of a laser field. In Eq. (6.5), this is modeled by an electric field of the
form,

E(t) = E0θ(t − t0) cos
(

ωph(t − t0)
)

, (6.12)

6Note, that we treat different spin degrees of freedom only by a degeneracy factor as outlined in
Sect. 3.3.4.
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Fig. 6.2 (a) Self-consistent one-electron ground-state density ρ1(x) for the following one-dimen-
sional model atoms: helium (He), beryllium (Be) and the molecular ion H+

3 . While the HF (2B)
approximation is indicated by dashed (solid) lines, the exact ground-state density as obtained from
propagating the Schrödinger equation in imaginary time is shown by the dots. (b) The same for
the molecules hydrogen (H2) and lithium hydride (LiH). In both panels, the density is normalized
to Nξ−1, where ξ = 2 accounts for the spin degeneracy. Panel (c) shows the regularized Coulomb
potential induced by the nuclei which are located at the origin or, respectively, at a distance db
apart

where E0 is the field strength, ωph the photon energy and t0 the time when the field is
turned on. Below, we consider the case of a strong field of intensity 3.5 ·1014 W/cm2

(E0 = 0.1 a.u.) and use a photon energy of ωph = 0.54Eh (84 nm or 14.7 eV ultra-
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Fig. 6.3 Time evolution of the one-electron density ρ1(x) in the 1D helium atom; all values in the
logarithmic contour-density plot are given in atomic units. (a)–(c): Time evolution without laser
field in (a) HF and (b) 2B approximation. Panel (c) shows the exact result. Initially, at t0 = 0, the
system is prepared in the HF ground state. (d)–(f): Response of the atom to an instantaneously
turned on laser field, cf. Eq. (6.12), with E0 = 0.1 (3.5 · 1014 W/cm2) and ωph = 0.54Eh (84 nm
ultra-violet radiation). In contrast to (a)–(c), here, the initial states are the self-consistent ground
states. In all panels, the helium atom is centered at x = 15a0, and the contour lines cover a density
range from 10−4 to 0.5a−1

0 with four contour lines in each decimal power between 10−4 and 0.1,
and contours between 0.1 and 0.5 each 0.05 a.u. Figure after Ref. [153]

violet (uv) radiation) which is about the transition energy to the first excited singlet
state in the helium model; again, we choose κ = κ1 = 1.

Without the laser field, the system’s time evolution depends on, both, the initial
state and the MBA used in the time propagation of the 1pNEGF. If the initial state is
the ground state, it should remain stationary and so should all observables. However,
whether or not this is true in an approximate calculation depends on the following: If
different MBAs are used in the (equilibrium) Dyson equation and in the subsequent
time propagation (the solution of the two-time KBEs), the initial state is usually
not stationary. Figures 6.3(a) to (c) show this effect in terms of the time-dependent
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electron density in the He atom when the ground state is approximated on the HF
level, i.e., does not incorporate electron-electron correlations. In HF approximation,
panel a), the initial ground state remains an eigenstate of the HF Hamiltonian. There-
fore, the density profile does not change in time, ρ1(x, t) = ρ1(x, t0). However, if
the ground state evolves under the influence of correlations, e.g., approximated on
the 2B-level (see panel (b)), the electrons start to perform a collective, “breathing”-
like oscillation in the Coulomb potential of the doubly-charged ion. Note that the
appearance of an interference pattern (see the arrows) is enhanced due to the finite
simulation box of width 30a0 leading to hard (elastic) electron reflection. Moreover,
we observe that the oscillatory behavior is well resolved in 2B, compare Fig. 6.3(b)
to the exact TDSE result shown in panel (c).

Now, let us turn on the laser field of Eq. (6.12) and include self-consistent initial
states7 to avoid the oscillations of Figs. 6.3(b) and (c). While Figs. 6.3(d) and (e)
show the density response again in HF and 2B approximation, panel (f) indicates
the exact result involving the fully correlated ground state. As we can see, the
non-perturbative laser field drives the electrons out of the ground state leading to
a strongly time-dependent density ρ1(x) at high and low density, i.e., the electrons
now oscillate in the net field of the ion and the uv laser (note that ionization is sup-
pressed due to the finite simulation box). Again, as in panels (b) and (c), the 2B
approximation captures many details in the time dependence which are absent in
the HF solution, see, e.g., the arrows.

The results along Figs. 6.3(a) to (f) can be seen as proof of principle calcula-
tions and validate the quality of the 2B approximation for the description of time-
dependent processes in atomic model systems. Taking advantage of the FE-DVR
basis, the results can straightforwardly be extended to molecules, see Ref. [153] for
an example on lithium hydride. In the remaining part of this Section, we outline how
to compute (ground-state) excitation spectra from the two-time NEGF.

The excitation spectrum of the 3D helium atom is complex and shows an infinite
number of Rydberg-like series, compare with Tanner et al. [37]. The first series is
energetically below (and converges to) the first ionization threshold I1 and involves
all singly-excited states. Above I1, but below the second ionization threshold I2,
we find the series of autoionizing resonances (doubly-excited states) each of which
converges to an excited-state energy of the singly-charged ion. In one dimension,
the spectrum is qualitatively the same even if soft-Coulomb potentials are used, see,
e.g., Ref. [194]. Thus, how do we access the excited states of the model atom?

For the dipole spectrum, the procedure is the following: First, starting from the
ground state, we calculate the time-dependent dipole moment d(t) in linear re-
sponse, i.e., for a small perturbation which is proportional to a delta function in
time (δ-kick). The Fourier transform, d(ω) = ∫ dt e−iωt d(t), is then peaked at the
excitation energies of basically all dipole-allowed transitions and the peak heights
correspond to the transition moments (oscillator strengths). Further, d(ω) contains

7In 2B approximation, this means we, in addition to the correlation functions, have also to propa-
gate the mixed Green’s functions, which are obsolete in a mean-field (HF) description.
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Fig. 6.4 Time-dependent dipole moment d(t) of the 1D helium atom following a perturbative
dipole δ-kick. HF: dashed line, 2B: solid lines up to t = 25 τ0 and t = 70 τ0, respectively, and
TDSE result: dots. The GKBA result is shown by the dotted line, cf. label (a). Except for the TDSE
calculation and the 2B result (b) (these use self-consistent initial states), the atom is prepared in
the HF ground state at t0 = 0

Table 6.3 Selected approximate and exact excitation energies �ωN,n (in units of Eh) of the 1D
helium atom; κ = κ1 = 1. While transitions with N = 1 indicate single excitations, all transitions
with N > 2 are double excitations. The exact first (second) ionization threshold is I1 = 0.755Eh
(I2 = 2.238Eh)

ω1,1 ω1,2 ω1,3 ω2,1 ω2,2 ω3,1

HF 0.549 0.670 0.709 –b –c –d

2B 0.537 n.a.a n.a. n.a. n.a. n.a.

Exact 0.533 0.677 0.712 1.356 1.415 1.701

a not accessible (n.a.) from a short calculation of less than 100 a.u. length
b–d not included in HF

information on singly- as well as multiply-excited states. Doubly- and multiply-
excited states are however a priori not included in an effective single-particle (HF)
approach, cf. [173] and also Sect. 6.2.1. Therefore, a correlated treatment is indis-
pensable.

Figure 6.4 shows the time-dependent dipole moment for the 1D helium atom fol-
lowing a δ-kick with E(t) = E0δ(t − t0) and E0 = 0.01 in Eq. (6.5). In 2B approx-
imation, with the GKBA (dotted line) and without (solid lines), the time-dependent
dipole moment reasonably well approaches the exact result. In comparison to HF
(dashed line), we observe a shift towards a larger main oscillation period. Spec-
troscopically, this main oscillation indicates the dominant excitation process, i.e.,
the transition to the first excited singlet state which is the energetically lowest sin-
gle excitation. All other excitations are rather hidden in the time series and only a
thorough analysis allows for their determination [153]. Table 6.3 gives the result
for some characteristic excitation energies �ωN,n, where N and n are the princi-
pal hydrogenic quantum numbers as defined, e.g., in Ref. [37]. Unfortunately, the
NEGF calculations are limited to relatively short propagation times such that ac-
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cessing doubly-excited states is very difficult8. Beyond the HF-level, no sufficiently
long calculations could have been performed so far—neither using the full two-time
scheme nor using the GKBA.

6.1.2 3D Atoms and Molecules

In the previous Section, we have neglected the three-dimensional nature of the atoms
and molecules. To treat these systems in their full dimensionality, however, all defi-
nitions along Eqs. (6.5) to (6.10) remain valid except for the fact that, in the Hamil-
tonian, we have to replace all xij (sj ) by vectors rij = |ri − rj | (sj ) in R

3 and have
to consider a pure Coulomb interaction between the charge carriers, i.e., κ = κj = 0.

Numerical calculations on real atoms and molecules based on the nonequilibrium
Green’s function have been presented by Dahlen, Stan and van Leeuwen. While,
in Refs. [68], the authors concentrate on the ground-state properties obtained in
different MBAs and test various levels of self-consistency in the GW approximation,
they, in Refs. [92, 130, 132], extend the Kadanoff-Baym approach to nonequilibrium
situations and propagate the 1pNEGF in real time for the beryllium atom and the
hydrogen molecule in the 2B approximation.

Concerning the ground states, the total energy of the elementary atoms and di-
atomic molecules He, Be, Ne, Mg, H2 and LiH has been computed from the Dyson
equation in Ref. [68] together with the ionization potential which is accessible from
the extended Koopmans’ theorem. There, the inclusion of correlations on the level
of the self-consistent 2B approximation has led to an essential improvement of the
HF results. As an illustration we, in Fig. 6.5, show results (adapted from Ref. [131])
for the binding energy of the charge-neutral hydrogen molecule as function of the in-
teratomic distance. Just as in the case of the 1D models (compare with Fig. 6.1), one
observes that the 2B approximation is capable to well approach the exact binding
energy curve. In addition, as outlined before in Sect. 6.1.1, the HF and 2B approxi-
mation both fail in the limit db → ∞, where the molecule dissociates.

Moreover, in Ref. [212], Stan et al. have demonstrated—on the basis of the GW
approximation—that partially self-consistent calculations may lead to equally ac-
curate results for the ground state as fully self-consistent calculations. A great ad-
vantage of such partly self-consistent schemes is that they are computationally less
demanding and, hence, allow for the treatment of larger systems.

Regarding nonequilibrium applications, it has been possible to include up to
30 molecular orbitals (HF basis functions) which are constructed as linear com-
binations of atomic Slater functions, see, e.g., Ref. [130]. Starting from the self-
consistent ground state, in Refs. [92, 130, 132], Dahlen et al. have computed the
time-dependent correlations functions G(1),≷(t, t ′) for the hydrogen molecule in

8At least for the helium atom, where single and double excitations are energetically well separated
from one another.
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Fig. 6.5 Binding energy Eb of the 3D hydrogen molecule as function of the internuclear dis-
tance db. While the dashed (solid) line indicates the self-consistent HF (2B) approximation, the
dotted line, denoted LW, refers to the energy obtained from the GW-type Luttinger-Ward func-
tional [90] evaluated with the HF Green’s function, for details see [92]. Further, the dots indicate
the exact binding energy curve obtained by configuration interaction (CI) calculations. Figure after
Ref. [131]

the presence of an electric field applied along the molecular axis. From this infor-
mation, they also obtain the time-dependent spectral function and compare it to the
respective spectral function in equilibrium9.

As an example for a NEGF calculation for a real 3D atom, we, in Fig. 6.6, display
the result for the polarizability of beryllium10 as obtained from the time-dependent
dipole moment in the linear response regime. From this quantity, one can estimate
the excitation energy of the 1S → 1P transition. In the Hartree-Fock approxima-
tion, one obtains the maximum of α(ω) at the position of the dashed vertical line
which refers to ω = 0.178Eh. On the other hand, the exact maximum is located at
ω = 0.194Eh, see the dash-dotted line. The dots in Fig. 6.6 show the frequency-
dependent polarizability as obtained in the 2B approximation. In addition, the hor-
izontal bars indicate the FWHM and the peak position for various shorter propaga-
tion times t < 51 a.u. From these values we can extract the 2B result: Taking the
average of all frequencies leads to an excitation energy of ω = 0.189Eh which is
closer to the exact excitation energy than to the HF result, see the solid vertical line.

In summary, we emphasize that the determination of other, energetically higher
excitations along the above lines is very difficult as the correlated calculations
are limited in the final propagation time. Moreover, NEGF calculations on three-
dimensional atomic (molecular) systems larger than the ones mentioned have not
yet been performed due to the computational complexity involved. Straightforward
extensions may only be possible by the use of pseudopotentials.

9Both spectral functions are obtained by the real-time propagation method.
10Adapted from Ref. [132].
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Fig. 6.6 Polarizability of the beryllium atom (dots) computed from the real-time evolution of the
Green’s function in 2B approximation: α(ω, t) = −1/E0

∫ t

0 dt̄ exp(iωt̄) d(t̄), where E0 � 1 is the
electric field strength of a perturbative dipole δ-kick applied to the system, and d(t) is the time-de-
pendent dipole moment. Whereas the energy of the 1S → 1P transition in HF approximation is
given by the dashed line, the exact transition energy is indicated by dash-dotted line. Further, the
horizontal bars show the full width at half maximum of α(ω, t) for times t smaller that 51 a.u. (see
the values in parentheses). The average position of the peak is indicated by the solid line, cf. 〈2B〉.
Figure after Ref. [132]

6.2 Few-Electron Quantum Dots and Wells

Quantum dots are nanoscale semiconductor structures in solids that are capable to
confine the quantum motion of electrons (or excitons) in practically all three spatial
dimensions. The resulting system has quasi zero-dimensionality and can contain a
single, a few or several thousand electrons. The presence of the confinement leads
to discrete single- and multi-particle eigenstates as they are present in atoms. This is
why QDs are likewise referred to as “artificial atoms” [213]. For an overview on the
rich electronic structure of QDs, see Reimann and Manninen [214] and references
therein.

In the above terminology, pairs or clusters of QDs are the equivalent to molecules
in which the electrons can, e.g., tunnel quantum-mechanically from one dot to an-
other. For a compilation of the resulting collective, optical and transport properties,
see, e.g., Ref. [215]. Many experimental aspects of the electron transport through
double quantum dots are reviewed in Ref. [216]. Moreover, the charge carriers in the
QD can also couple to the lattice vibrations of the surrounding solid—the phonons.
This interaction can have a large influence on the dot’s optical absorption spec-
trum [108]. In addition, when being contacted to external electron reservoirs (leads),
QDs can operate as switching devices. Along these lines, a QD can even work as
a single-electron transistor due to the Coulomb blockade effect, see [217]. Finally,
in the research area of quantum computation, QD systems have been proposed for
quantum gates, e.g., Ref. [218].

In comparison to QDs, quantum well (QW) structures [219] are very similar in
many aspects though, here, the electrons experience a confinement only in certain
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directions. Typically, the charge carriers are trapped in the growth direction of the
substrate, whereby the structure consists of layers of at least two different semicon-
ductor materials, i.e., it forms a heterostructure. The crossover from one material
to the other induces a potential barrier and is thus responsible for the confinement.
In many situations, the electrons can move almost freely in the lateral direction but
are strongly confined in the perpendicular plane (vertical direction). In this case, the
confinement dominates the QW properties.

A very important feature of, both, quantum dots and wells is the fact that the in-
teraction strength between the charge carriers and the energy states can be externally
controlled by fabrication and/or by applying an external electric field (a voltage) or a
magnetic field. This paves the way for interesting nanotechnology applications [220]
and, from the theoretical point of view, allows for the investigation of different pa-
rameter regimes including the transition from a weakly interacting quantum system
to a strongly coupled, quasi-classical system, e.g., [221]. Furthermore, whereas in
QDs the confinement is often well described by a harmonic potential, the verti-
cal confinement in QWs typically consists of hard-wall potentials at the interface
boundaries and is nearly constant within the carrier material. Moreover, the mobil-
ity of electrons in QDs and QWs is altered by the material embedding. This fact is
usually taken into account by an effective (typically smaller) electron mass m∗ and
a modified dielectric constant ε∗ε0 with typically ε∗ > 1. The characteristic length
scale is then the effective Bohr radius (see below).

To name a few NEGF applications, e.g., Kwong et al. [103] have studied the
dynamics of an optically excited electron-hole plasma in QWs. Using the Matsubara
Green’s function, the ground states of few-electron QDs with harmonic confinement
have been investigated at zero and finite temperatures in Ref. [129]. Extensions of
this work to nonequilibrium situations can be found in Ref. [222]. In the following,
we want to focus on a quantum well with an adjustable width L containing only a
few N electrons.

In units of the characteristic confinement energy E∗
0 = �

2/(m∗L2), the Hamilto-
nian in vertical direction reads (ri = (0,0, ziL)):

Ĥ (t) =
N
∑

i=1

(

−1

2

∂2

∂z2
i

+ v(zi)

)

+ λ∗
N
∑

i<j

1

{(zi − zj )2 + κ}1/2
,

v(z) =
{

0, 0 < z < 1,

+∞, otherwise.

(6.13)

Here, the dimensionless coupling parameter λ∗ is defined by (a∗
0 is the effective

Bohr radius),

λ∗ = L

a∗
0

= e2m∗L
4πε∗ε0�

2
, (6.14)

and measures the relative interaction strength between the electrons. While the limit
λ∗ → 0 represents the ideal quantum case, where the electrons do not interact, the
limit λ → ∞ leads to a quasi-classical, Wigner-crystal behavior, e.g., Ref. [223].
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Moreover, a soft-Coulomb interaction with κ = 1 can be motivated along Ref. [224]
though it exhibits no cusp11 [225] at small distances. Nevertheless, it has Coulomb
asymptotics. In realistic sub-100 nm semiconductor heterostructures, the coupling
parameter can be as large as λ∗ = 10. If we assume a GaAs-based host material,
such a value corresponds to a confinement energy of about 0.1 meV, while a 50 nm-
QW means λ∗ = 5 (E∗

0 = 0.438 meV). Note that even a QW width as small as 10 nm
corresponds to λ∗ = 1 (E∗

0 = 10.9 meV) and hence refers to the case of relatively
strong electron-electron coupling.

In the following, we investigate the excitation spectrum of a four-electron QW
at different coupling strengths. In particular, we focus on double excitations (DEs),
which require a correlated treatment and are usually poorly described within time-
dependent density functional theory [18]. To distinguish between single and double
excitations, we trace the system behavior to the zero-coupling limit and analyze the
functional dependence of the oscillator strengths [110]. In addition, we neglect the
electron motion in the lateral direction and compute the (dipole) excitation spectrum
with respect to the z-confinement only. As in Sect. 6.1.1, we use an FE-DVR ansatz
for the spatial degrees of freedom in the 1pNEGF.

6.2.1 Correlation Effects in the Optical Absorption Spectra

In an interacting, finite, multi-electron system, the discrete energetic structure of
excited states and their properties can be highly complex. In Sect. 6.1.1, we have
seen that this applies already to the most elementary two-electron system—the he-
lium atom. Usually, more and more excitation channels open when electrons are
added to the system, and a thorough bookkeeping of states as well as an adequate
characterization becomes indispensable to understand the excitation properties.

In many situations, the most basic features of an excitation spectrum can be un-
derstood on a single-particle level, i.e., by assuming a set of one-particle orbitals
which can be occupied by a maximum of two electrons with opposite spin. In a
frozen-orbital (FO) or Koopman’s approximation [36], we can take the occupied
and unoccupied (virtual) Hartree-Fock or Kohn-Sham orbitals of the ground state to
construct excited states. To this end, one or more electrons are promoted into virtual
orbitals forming single singly- or multiply-excited Slater determinants for each spin
species, cf. Appendix A.1. The excited-state energies are then given by,

E =
∑

i

′ε(1)
i +

∑

ij

′J (2)
ij −

∑

ij

′K(2)
ij , (6.15)

where ε
(1)
i denotes the energy of orbital i, and all sums run over only those orbitals

that contribute in the determinant12. Further, J
(2)
ij and K

(2)
ij represent the Coulomb

and exchange integrals defined as (with HF or Kohn-Sham orbitals φ
(1)
i (r)),

11A non-zero slope of the interaction potential at |zi − zj | = 0.
12This is indicated by the primes in Eq. (6.15).
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J
(2)
ij =

∫

d3r

∫

d3r ′ ∣∣φ(1)
i (r)

∣
∣
2
w(2)
(

r − r′)∣∣φ(1)
j

(

r′)∣∣2,

K
(2)
ij =

∫

d3r

∫

d3r ′ φ(1)
i (r)φ(1)

j (r)w(2)
(

r − r′)φ(1)
i

(

r′)φ(1)
j

(

r′).
(6.16)

Of course, the ground- and excited-state energies obtained from Eq. (6.15) are
only approximate due to the neglect of orbital relaxations and correlations. The en-
ergy of singly-excited states is however often reasonably well described. On the
other hand, the FO approximation can fail to reproduce the excitation energy of
doubly-excited states13. The reason for this is that doubly-excited states are not nec-
essarily well described by a single doubly-excited Slater determinant. In addition,
the transition moments from the ground state to multiply-excited states are all zero
a priori which limits the applicability of the FO approach.

Finite transition moments are usually obtained only when correlations are in-
cluded. A correlated treatment of the many-body problem however renders the
single-particle picture problematic as the excited states are described by superpo-
sitions of many Slater determinants. Consequently, a straightforward and direct
characterization of excited states as in the mean-field picture does no longer ap-
ply. Nevertheless, according to Stanton and Bartlett [226], we still can count the
number of electrons that are simultaneously excited. The corresponding measure is
the so-called approximate excitation level (AEL),

A0→n = 1

2
Tr |ρ1,n − ρ1,0|. (6.17)

Here ρ1,n denotes the exact 1pRDM (the prime indicates a second set of coordi-
nates),

ρ1,n = Tr 2...N

∣
∣Ψ (N)

n

〉〈

Ψ (N)
n

∣
∣
′
, (6.18)

which is expressed in the natural orbital basis that diagonalizes the ground-state
density matrix ρ1,0. Transitions with an AEL close to unity are referred to as single
excitations (SEs). On the other hand, an AEL of about 2.0, 3.0 or 4.0 indicates
states of essential double-, triple- or quadruple-excitation character, respectively.
We note that an integer AEL is obtained only when the system is non-correlated and
an effective single-particle approach (such as the FO approximation) is used.

Now, let us come back to the excitation spectrum of a QW structure. In the lower
panel of Fig. 6.7, we show all ground-state excitation energies of a four-electron QW
at a coupling parameter of λ∗ = 5 which is typical for sub-100 nm heterostructures,
cf. Eq. (6.14). The dots indicate the excitation energies �ω0→n as they are obtained
from exact diagonalization (ED) of the many-body Hamiltonian in terms of the ideal
QW states. For a table with exact numbers, see Ref. [110]. Generally, we distinguish
between dipole (open dots) and non-dipole transitions (closed dots). Further, the
squares refer to the FO result, and the vertical position of the points give the AEL
according to Eq. (6.17).

13This applies also to other multiply-excited states.
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Fig. 6.7 Ground-state excitation spectrum of the four-electron QW at λ∗ = 5. In the lower
panel, the approximate excitation level A0→n is shown for all excited states below �ω = 8E∗

0 ,
cf. Eq. (6.17): (a) exact dipole transitions (open dots), (b) exact non-dipole transitions (full dots),
and (c) frozen-orbital approximation (squares). Upper panel: dipole excitation spectrum in arbi-
trary units as obtained from the Kadanoff-Baym equations in HF (dashed) and 2B approximation
(dots). The crosses indicate the transition dipole moments as obtained from exact diagonalization.
Single and double excitations are, respectively, marked with the label “s” and “d”

Indeed, we observe that the AEL allows us to uniquely identify the alternating
dipole- and non-dipole transitions in the quantum well as single, double, triple and
quadruple excitations. Note that the deviation of the AEL from an integer value is
overall less than 0.25, cf. the dots. Moreover, we observe that the FO approximation
(with integer AEL) also performs quite well in the case of λ∗ = 5 although there
appear some discrepancies for larger excitation energies, compare the location of
the squares relatively to the dots.

6.2.2 Electronic Double Excitations from the Kadanoff-Baym
Equations

With ED and FO data as reference14, we now investigate the QW spectrum on
the basis of the Kadanoff-Baym equations. Principally, we expect that the time-
dependent treatment and the inclusion of correlations should lead to an essential
improvement of the FO result.

To obtain the excitation spectrum in a dynamical way, we, in Eq. (6.13), make
v(z) time dependent, i.e., set v(z, t) = v0δ(t − t0)z and record the time-dependent

14See the lower panel of Fig. 6.7 and the last paragraph in Sect. 6.2.1.
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Fig. 6.8 Four-electron quantum well at λ∗ = 5: Linear response of the time-dependent dipole mo-
ment d(t) in HF (dashed line) and 2B approximation (solid line). The dots indicate the exact TDSE
result. The inset shows that differences between HF, 2B and TDSE are small and that accurate re-
sults are required to resolve more excitations than just the transition to the first singly-excited state,
cf. Figs. 6.7 and 6.9

dipole moment d(t) for the linear response case v0 � 1. Figure 6.8 shows d(t) in HF
(dashed line) and 2B approximation (solid line) and compares to the exact solution
of the time-dependent Schrödinger equation (TDSE), cf. the dots. Basically, there
are only small differences between the three curves such that correlation effects are
rather hidden in the time series, see also the inset. Essential differences become not
visible until performing the Fourier transform of the time-dependent dipole moment,
see the upper panel of Fig. 6.7 which shows the absolute square, |f (1)(ω)|2, of the
transformation to the energy (frequency) space.

First of all, we notice that the Hartree-Fock approximation (dashed curve)—as
already mentioned in the last section—is unable to describe transitions to doubly-
excited states. Apart from this, all single excitations below 8E∗

0 are well resolved
and are in better agreement with the exact result than with the FO approximation,
compare with the squares in the lower panel of Fig. 6.7. The latter is a direct conse-
quence of the dynamical treatment. In the 2B approximation, which includes corre-
lation effects up to second order in the interaction, we expect to see also transitions
to doubly-excited states. Looking at the figure, we generally observe much more
structure in the spectrum, and, indeed, there exist additional peaks that are located
at energies for which we have double excitations (DEs) in the system, cf. in partic-
ular the three energetically lowest DEs.

Now, it is tempting to identify the additional peaks in the second Born approxi-
mation as the correct double excitations. However, in comparison to the exact TDSE
solution, we cannot ignore the following deficiencies: (i) the relatively low excita-
tion strength of the approximate DEs (see the arrows in the upper panel of Fig. 6.7),
(ii) the occurrence of large energy shifts and splittings for SEs which are well de-
scribed in HF approximation, and (iii) the presence of additional transitions at low
and high energies that cannot be attributed to any excitations in the exact system.

As these drawbacks require detailed explanation, we, in Fig. 6.9, investigate
the single and double excitations of the four-electron QW as function of the cou-
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Fig. 6.9 Ground-state dipole
excitation spectrum of the
four-electron QW as function
of the coupling strength λ∗,
cf. Eq. (6.14). While the HF
result, covering only single
excitations, is shown by the
four gray dashed lines, the
exact excitation energies of
single and double excitations
are given by the black solid
lines. The double excitations
in FO approximation are
shown by the squares.
Correlated treatment in 2B
approximation: GKBA
(density plot) and full
two-time solution of the
KBEs (dots)

pling strength and, particularly, analyze the limit when the system becomes non-
interacting, i.e., λ∗ → 0. The non-interacting limit is crucial as here all DEs van-
ish15. Focusing first on the HF approximation, Fig. 6.9 indicates that it correctly
describes all SEs over the whole range of considered coupling parameters, cf. the
gray dashed lines versus the FO data (squares). Correlated results are obtained in
two ways: using full two-time 2B calculations (dots) for specific λ∗-values on the
one hand and applying the GKBA on the other (density plot). Principally, the SEs
are also well covered by the GKBA and 2B calculations for small λ∗. However, this
does not apply for double excitations. Comparing GKBA to the exact diagonaliza-
tion data (solid lines) as well as to the FO result, we observe that, admittedly, the
correct λ∗-limit is reached, but the DE energy varies throughout too strongly with
the coupling parameter (note the different slope). This λ∗-dependence is even such

15More precisely, they have zero transition dipole moment for λ∗ = 0, cf. Sect. 6.2.1.
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Fig. 6.10 Four-electron QW as in Figs. 6.7 and 6.9. Absolute square of the transition dipole mo-
ment for the five energetically lowest excited states (dipole transitions): There are three singly-ex-
cited states (s1, s2 and s3) and two doubly-excited states (d1 and d1). ED: solid lines, GKBA:
dashed lines with errorbars, and 2B: dots. Label (a): Energetically lowest double excitation as
obtained by GKBA and 2B, respectively

that “avoided” crossings of the N -particle energy levels occur16 at, e.g., λ∗ ≈ 1.75,
3.5 and 5.0. We emphasize that, in the whole range of considered coupling strengths,
such crossings do not appear in the exact system.

By means of the transition dipole moments (TDMs), Fig. 6.10 proves that the
relevant non-singly-excited states obtained by GKBA are really of DE character as
they show the correct λ∗-dependence of the TDM whose absolute square is propor-
tional to (λ∗)2 and, in contrast to SEs17, thus vanishes for λ∗ → 0. Following the
energetically lowest DE (see the curve labeled (a) in Fig. 6.10), we however ob-
serve that the GKBA (2B) result starts to deviate considerably from the exact one
for λ∗ ≈ 1. This is attributed to the avoided crossing found in Fig. 6.9. In particular,
the curve indicates that the DE takes over the role of the second single excitation
for larger coupling parameters as, here, the TDM changes only slowly with λ∗. The
same happens to the second DE at λ∗ ≈ 4. For the moderate-to-strong coupling case
λ∗ = 5, this explains the detected energy shifts and splitting effects, compare with
the upper panel of Fig. 6.7.

In conclusion, we note the following: On the one hand—on the basis of the λ∗-
dependence of the TDMs of the excited states in the QW and by tracing the system
behavior to the zero-coupling limit—we can clearly distinguish between states of

16Notice, that this behavior is not a specialty of the GKBA as full 2B calculations do confirm this
behavior, cf. the dots.
17Here, the TDM is nearly constant for λ∗ < 1. Note that both behaviors can be understood by
standard perturbation theory.
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different excitation character in a NEGF approach. Reasonable results for doubly-
excited states have been obtained beyond the HF level for small coupling. On the
other hand, however, the 2B calculations are rather poor in approximating the en-
ergy of DEs though the respective TDMs have been found to be quite accurate in
parameter regimes where there appear no avoided crossings. Furthermore, we have
identified additional transitions in the approximate spectrum that do not correspond
to excitations in the exact system. It will be interesting to see, how these limita-
tions of a 2B approach can be overcome by considering more advanced many-body
approximations.



Chapter 7
Conclusion and Outlook

This monograph was devoted to quantum systems consisting of a finite number of
identical particles in equilibrium and nonequilibrium. Examples were electrons in
small atoms and molecules as well as electrons in quantum dots. We were inter-
ested in the treatment of correlation effects and their dynamics during and after an
external excitation—problems of high current interest in many fields. Our approach
was based on second quantization and has used the nonequilibrium Green’s func-
tions as the central quantities. The main advantages of this method are its internal
consistency, the fulfillment of conservation laws and the existence of systematic
approximation schemes that can be derived from Feynman diagrams.

While most previous numerical works using NEGFs focused on spatially homo-
geneous systems, here we concentrated on the numerical analysis of spatially in-
homogeneous systems. This situation is more challenging because the one-particle
NEGF, in general, depends on two coordinates and two times. Below we summarize
the main results and outline future developments.

7.1 Summary

• It has been shown that direct numerical solutions of the two-time Kadanoff-Baym
equations are feasible for various spatially inhomogeneous quantum many-body
systems with Coulomb interaction, including electrons in atoms and molecules.
Another example were electrons in “artificial atoms”, i.e., in quantum dots. Com-
pared to Coulomb interaction, systems with short range interaction should be even
simpler to treat.

• It has been demonstrated that reasonable results that include two-particle corre-
lations can already be obtained on the level of the second Born approximation,
which is among the most simple conserving approximations for the one-particle
self-energy beyond the mean-field level. When including direct and exchange
terms, the results are also quantitatively reliable in the case of weak to moderate
coupling.

K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to
Inhomogeneous Systems, Lecture Notes in Physics 867,
DOI 10.1007/978-3-642-35082-5_7, © Springer-Verlag Berlin Heidelberg 2013
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• For inhomogeneous systems, the finite element-discrete variable representation
(FE-DVR), as introduced in Chap. 3, has allowed for a drastic simplification of
the self-energy computation. The main advantage is that the matrix elements of
the binary interaction become highly diagonal and that, hence, the integration or
summation over the vertex points in the perturbation diagrams can, at least partly,
be performed analytically.

• With the efficient MPI parallelization of the two-time propagation, longer propa-
gation times and (or) calculations on larger systems become feasible.

• A further possibility to reduce computer storage requirements is to reconstruct
the two-time NEGFs from their values on the time diagonal. To this end, we have
employed the generalized Kadanoff-Baym ansatz with Hartree-Fock propagators
for the second Born approximation which retains the conservation laws. It shows,
in most cases, very good agreement with full second Born results but allows for
orders of magnitude longer propagation times.

7.2 Prospects for Future Applications

The present results are a clear demonstration that inhomogeneous quantum systems
are now accessible for a full NEGF analysis. The examples presented in this work
are just illustrative examples that can be immediately extended to more complex
systems in the near future.

• While the generalized Kadanoff-Baym ansatz (GKBA) has allowed us to access
the long-time behavior of correlated quantum systems, its application, so far, was
limited to the second Born approximation. This restricts the analysis to weakly or
moderately coupled systems. One way to proceed toward strong coupling would
be to use the one-particle self-energy in T-matrix approximation and to apply the
GKBA to it.

• A few-site Hubbard model and its extensions, are good test systems to understand
in more detail the spurious effects that have been observed in the 2B approxima-
tion (artificial damping of the dynamics, artificial peaks in the spectrum etc.). In
addition, their simplicity allows to implement and test other conserving approxi-
mations such as the GW or T-matrix approximation more easily than for spatially
continuous systems.

• A topic that requires a more profound analysis is the description of doubly-excited
and multiply-excited states within a conserving many-body approximation and
the impact of these states on the temporal dynamics.

• To work out the difference between the full two-time propagation and the GKBA,
it would be interesting to perform benchmark calculations with an “exact” test
self-energy. These calculations should allow one also to extend the adiabatic
switching to finite temperatures.

• In many cases of multi-electron systems such as in atoms or condensed matter,
not all electrons are actively participating in the system’s dynamics. In that case
the problem may often be simplified by performing a projection on an active



7.2 Prospects for Future Applications 107

sub-system (restricted active space concepts). Such methods exist in quantum
chemistry and in atomic physics [230] and may be useful for NEGFs as well.

• When electrons are coupled to a (quasi-)continuum of degrees of freedom such
as phonons or photons a self-consistent propagation of all degrees of freedom
is often prohibited and not needed. In such cases an efficient way to proceed is
to trace over the additional degrees of freedom (“environment”) that give rise to
additional self-energy contributions.

Despite the progress achieved in recent years and, in particular, the here-
presented advances in the treatment of inhomogeneous systems, the NEGF scheme
remains—due to the non-Markovian structure of the collision integrals—computa-
tionally costly. Therefore, to achieve long propagation times or to treat larger sys-
tems, ultimately, one solution is to develop multiscale methods. For a temporal mul-
tiscale approach, it should be possible to treat the shortest time scales on a fully
non-Markovian two-time level whereas for longer times one switches to the GKBA
and, eventually, to the Markov limit (Fermi’s golden rule). Another idea, in partic-
ular to access larger systems, is to develop hybrid approaches, i.e., efficient combi-
nations with conceptually simpler approaches. For example, for condensed matter
applications, one should establish links to density functional theory (DFT). Another
promising route for further developments is to establish connections with nonequi-
librium versions of dynamical mean-field theory (DMFT).

The above list is by no means complete but contains just a few immediate exten-
sions of the present work. More problems of long-term interest have been mentioned
at the beginning of Chap. 1. We expect that the computational strategies developed
in the present work to solve the (Keldysh-)Kadanoff-Baym equations for the NEGF
for spatially inhomogeneous systems will be very efficient and successful in making
the analysis of these questions accessible in the near future.



Appendix A
Second Quantization

The method of second quantization is deeply rooted in relativistic quantum field
theory (QFT) which gives a physical meaning of particle indistinguishability and
allows for a unification of fields and particles including the effect of interac-
tion [72, 227, 228]. However even for non-relativistic systems, second quantiza-
tion is very helpful for describing assemblies of identical particles. In particular, it
provides mathematical tools that directly account for important symmetries and the
(non-)conservation of the system’s particle number.

A.1 Symmetry of Many-Body States

The quantum dynamics of N identical non-relativistic particles are described by the
time-dependent Schrödinger equation (TDSE),

(

i�
∂

∂t
− Ĥ (N)(t)

)

Ψ (N) = 0, (A.1)

with the Hamiltonian Ĥ (N) being invariant under particle exchange. In the simplest
case (neglecting spin degrees of freedom etc.), the wave function is an element of the
N -particle Hilbert space H (N) and has the form Ψ (N) = Ψ (r1, . . . , rN, t), where
the state of each particle i is determined by its position ri relative to some reference.
As also the probability density ρ(r1, . . . , rN, t) = |Ψ (r1, . . . , rN, t)|2 is invariant
under the exchange of any pair of labels (ensuring indistinguishability), the wave
function Ψ (N) must obey the symmetry,

PijΨ (r1, . . . , ri , . . . , rj , . . . , rN, t) = e−iφΨ (r1, . . . , rj , . . . , ri , . . . , rN, t). (A.2)

Here, Pij indicates the pairwise permutation operator. In principle, the phase fac-
tor e−iφ could be arbitrary. However, we know from experience that at the most
only φ = 0 and π are realized1. Thus, we deal with even (odd) permutations,

1Of course, the operator Pij is Hermitian (and unitary) and thus has real eigenvalues.
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PΨ (N) = +Ψ (N) (PΨ (N) = −Ψ (N)). The corresponding particles are called
bosons (fermions). A stringent proof of this phase restriction essentially appears
in relativistic quantum mechanics and leads to the spin-statistics theorem and, for
fermions, to the Pauli exclusion principle.

If the total wave function is constructed from a complete set of one-particle states
φi(r) according to Ψ (N) =∑i1...iN

ai1...iN (t)φi1(r1) · · · · · φiN (rN), the symmetry
conditions of Eq. (A.2) directly transfer to the coefficients ai1...iN (t) ∈ C. Moreover,
we can introduce properly (anti-)symmetrized N -particle basis states as tensor prod-
ucts. For bosons, the inner product is then a permanent of the matrix {φi(rj )}. For
fermions, we obtain Slater determinants,

Φi1,...,iN (r1, . . . , rN) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

φi1(r1) φi1(r2) . . . φi1(rN)

φi2(r1) φi2(r2) . . . φi2(rN)
...

...
...

φiN (r1) φiN (r2) . . . φiN (rN)

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A.3)

In this basis, any fermionic wave function can be written as,

Ψ (N) =
∑

i1...iN

bi1...iN (t)Φi1,...,iN (r1, . . . , rN), (A.4)

in which the coefficients bi1,...,iN (t) ∈ C do not need to obey a certain permutation
symmetry regarding their indices. With the sum running over all possible Slater
determinants, Eq. (A.4) is usually referred to as the configuration interaction (CI)
representation of a many-body wave function [36]. On the other hand, if we include
only a few determinants, the ansatz is generally called multi-configuration Hartree-
Fock (MCHF), e.g., [17]. In the limiting case of only a single Slater determinant,
we are back to Eq. (A.3) and the standard (mean-field) Hartree-Fock approach [35].

The central point of the second quantization formalism to be introduced below
is that it will automatically keep track of the correct permutation symmetry of the
many-body state according to Eq. (A.4).

A.2 Occupation Number Representation

In the following, we assume that the set of one-particle states {|i〉 = φi(r)} with
i = 1,2,3, . . . is complete and orthonormal, i.e.,

〈i|j 〉 = δij ,
∑

i

〈i|i〉 = 1. (A.5)

One possibility of labeling the fermionic basis states introduced in Eq. (A.3) is to
write Φi1,...,iN (r1, . . . , rN) = √

N !|i1, . . . , iN 〉, where the indices on the r.h.s. form a
sequence with i1 < i2 < · · · < iN , and the prefactor

√
N ! accounts for normalization

of |i1, . . . , iN 〉. As the Slater determinant vanishes when two indices are equal, it is
clear that the sequence must be strictly monotonic. For bosons, |i1, . . . , iN 〉 means
the respective permanent, and it is i1 ≤ i2 ≤ · · · ≤ iN . The correct normalization is
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governed by a factor of
√

n1!n2! . . . n∞!, where the integers ni denote the number
of particles that occupy the state |i〉. In both cases, the set of states |i1, . . . , iN 〉 is
complete and orthonormal.

Another possibility of labeling is to directly resort to occupation numbers (oc-
cupation number representation). Here, any state |i1, . . . , iN 〉 is equally described
by the ket vector |n1, n2, . . .〉 = |{n}〉 with

∑

i ni = N , where, for bosons, ni can
take any positive integer including zero, and, for fermions, one either has ni = 0 or
ni = 1. For the inner product of two states, |{n}〉 and |{n′}〉, one then obtains

〈{n}|{n′}〉=
∏

i

δni ,n
′
i
. (A.6)

A.3 Particle Creation and Annihilation in Fock Space

In the above sections, the particle number N was constant, and we dealt with a wave
function involving strictly N coordinates. However, in many physical situations the
number of particles can fluctuate, e.g., through induced particle currents or thermal
effects. Theoretically, this becomes most natural in the grand canonical ensemble of
statistical physics.

In quantum statistics, the Fock space H allows for variations in the number of
particles [229]. It is defined as the direct sum of all Hilbert spaces with distinct but
fixed particle number,

H =
∞
⊕

i=0

H (i) = H (0) ⊕ H (1) ⊕ H (2) ⊕ · · · ⊕ H (N) ⊕ · · · . (A.7)

An arbitrary state in Fock space then reads,

Ψ = Ψ (0) + Ψ (1) + Ψ (2) + · · · + Ψ (N) + · · · , (A.8)

i.e., it is composed of elements of H (0), H (1), H (2) and so on. H (0) is one-
dimensional and consists of the vacuum state |0〉. Different subspaces of the Fock
space with fixed particle number are orthogonal.

All bosonic and fermionic states |n1, n2, . . .〉 = |{n}〉 with arbitrary particle num-
ber belong to the Fock space. For this reason, it is useful to define operators which
can increase or decrease the number of particles in |{n}〉 by one (producing a dif-
ferent state in H ) but let the symmetry of the many-body state unaffected. For
fermions, we define such creation (f̂ †) and annihilation operators (f̂ ) by,

f̂
†
i |n1, n2, . . . , ni, . . .〉 = (−1)s(1 − ni)|n1, n2, . . . , ni + 1, . . .〉,
f̂i |n1, n2, . . . , ni, . . .〉 = (−1)sni |n1, n2, . . . , ni − 1, . . .〉,

(A.9)

where s =∑i−1
j=1 nj , and f̂i |0〉 = 0 is just a special case of the annihilator action. If

the initial state has particle number N , the result of Eq. (A.9) is a properly antisym-
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metrized (N ± 1)-particle state2. The built-in antisymmetrization manifests itself in
the (equal-time) canonical anticommutation relations3,

[

f̂i , f̂
†
j

]

+ = δij ,

[

f̂i , f̂j

]

+ = [f̂ †
i , f̂

†
j

]

+ = 0,
(A.10)

where [â, b̂]+ = âb̂ + b̂â. For bosons, the only difference is that, instead of the
anticommutator, we have to take the commutator, [·, ·]−.

Some useful relations hold:

|i1, i2, . . . , iN 〉 =
N
∏

n=1

f̂
†
in
|0〉, 〈i1, i2, . . . , iN | = 〈0|

N
∏

n=1

f̂in ,

[

f̂i ,
(

f̂
†
j f̂k

)]

− = δij f̂k,
[

f̂
†
i ,
(

f̂
†
j f̂k

)]

− = −δikf̂
†
j ,

[

f̂i ,
(

f̂
†
j f̂

†
k f̂mf̂l

)]

− = δij f̂
†
k f̂mf̂l + δikf̂

†
j f̂l f̂m,

[

f̂
†
i ,
(

f̂
†
j f̂

†
k f̂mf̂l

)]

− = −δil f̂
†
j f̂

†
k f̂m − δimf̂

†
k f̂

†
j f̂l .

(A.11)

Finally, we mention that, if the one-particle states |i〉 change under a unitary
transformation, {|i〉} → {|i′〉}, the creation and annihilation operators transform ac-
cording to,

f̂
†
i′ =
∑

i

〈

i|i′〉f̂ †
i , f̂i′ =

∑

i

〈

i′|i〉f̂i . (A.12)

A.4 General Form of Operators

The creation and annihilation operators defined in Eq. (A.9) are the basic quanti-
ties of the second quantization method. With them, we can reformulate arbitrary
operators in quantum mechanics and can redefine how to compute observables and
expectation values of Hermitian operators.

First, it is easily verified that,

ρ̂1,ij = f̂
†
i f̂j , (A.13)

is the one-particle reduced density matrix (1pRDM) operator. Second, the particle
number operator (the identity operator in the Fock subspace H (1)) takes the form
N̂ =∑i f̂

†
i f̂i .

In general, an N -particle operator Â(N) can be of S-particle type, i.e.,

2Analogous expressions exist for bosons: b̂
†
i |n1, . . . , ni , . . .〉 = √

ni + 1|n1, . . . , ni + 1, . . .〉 and

b̂i |n1, . . . , ni , . . .〉 = √
ni |n1, . . . , ni − 1, . . .〉.

3This is a direct consequence of the definitions in (A.9).
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Â(N) =
N
∑

i1,...,iS=1

â
(S)
i1...iS

, S ≤ N. (A.14)

In the second-quantized form, it is rewritten as,

Â = 1

S!
∑

i1...iS ,i′1...i′S

〈i1, . . . , iS |â(S)
∣
∣i′S, . . . , i′1

〉

f̂
†
i1

. . . f̂
†
iS

f̂i′S . . . f̂i′1 . (A.15)

Note that, in contrast to Eq. (A.14) where the sum ranges over the particles, the
indices i1 to i′S in Eq. (A.15) label the one-particle states |i1〉 to |i′S〉 and that the
ordering of the second set of f̂ -operators is inverted. Moreover, the term “second
quantization” is motivated by the fact that the form of Eq. (A.15) looks similar to an
expectation value taken between wave functions4. In this language, the one-particle
TDSE can be seen as a classical field equation, and the operators f̂i and if̂ †

i become
canonically paired variables (�≡ 1), see Ref. [84].

The most relevant operators are of one- and two-body type:

(i) For the operator of the kinetic energy T̂ (N) =∑N
i=1 t̂

(1)
i =∑N

i=1
−�

2

2m
∇2

ri
of a

system of N particles (mass m), we obtain,

T̂ =
∑

i,j

〈i|t̂ (1)|j 〉f̂ †
i f̂j . (A.16)

Other operators of one-body type, such as the single-particle potential energy
V̂ (N), have an analogous form where t̂

(1)
i has to be replaced by the proper op-

erator.
(ii) The interaction energy operator Ŵ (N) =∑N

i<j ŵ
(2)
ij becomes,

Ŵ = 1

2

∑

ij,kl

〈ij |ŵ(2)|kl〉f̂ †
i f̂

†
j f̂l f̂k. (A.17)

The matrix elements 〈i|t̂ (1)|j 〉 and 〈ij |ŵ(2)|kl〉 in (i) and (ii) are often called one-
particle and two-particle integrals, respectively. Following the physicist’s notation5,
we have in coordinate space,

〈i|t̂ (1)|j 〉 = − �
2

2m

∫

d3r φ∗
i (r)∇2φj (r),

〈ij |ŵ(2)|kl〉 =
∫

d3r

∫

d3r ′ φ∗
i (r)φ∗

k

(

r′)w(2)
(

r − r′)φj (r)φl

(

r′).
(A.18)

If the binary interaction w(2) is symmetric and the states |i〉 are real, the two-electron
integrals are fully symmetric with respect to interchange of i ↔ j , k ↔ l and pairs
ij ↔ kl.

4The analogy becomes even more obvious when one transforms into coordinate space. Here, f̂
†
i

and f̂i become continuous and are usually called “field operators” with notation ψ̂†(r) and ψ̂(r).
5In contrast to the chemists notation, see Ref. [36].
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The evaluation of observables becomes straightforward using Eq. (A.15). For the
mean kinetic energy

〈T̂ 〉 =
∑

i,j

〈i|t̂ (1)|j 〉〈f̂ †
i f̂j

〉

and other observables of one-body type, the task is to compute the expectation val-
ues 〈f̂ †

i f̂j 〉 which are the elements of the 1pRDM 〈ρ̂1〉. For the interaction energy
〈Ŵ 〉, we correspondingly need the elements of the two-particle density matrix 〈ρ̂2〉.

In the case of mixed states6, 〈ρ̂1〉 and 〈ρ̂2〉 are given by,

〈ρ̂1〉 = Tr {ρ̂ρ̂1}, 〈ρ̂2〉 = Tr {ρ̂ρ̂2}, (A.19)

where Tr {ρ̂ . . .} =∑r pr〈r| . . . |r〉 and ρ̂ =∑r pr |r〉〈r| denotes the full density op-
erator of the system (the sum ranges over all system realizations |r〉 of which each
has a real probability pr and

∑

r pr = 1). For pure states, we have a single realiza-
tion only, i.e., ρ̂ = |r〉〈r|, where |r〉 is expanded, e.g., in terms of Slater determinants
or permanents (in occupation number representation): |r〉 =∑{n} c{n}|{n}〉.

6E.g., for a particle ensemble at finite temperatures.



Appendix B
Perturbation Expansion. Supplements

“The problem that intrigued me in Copenhagen was how to delineate the structure of
approximations to multi-particle Green’s functions that would include conservation laws.”

(Gordon Baym, in Ref. [1])

This part of the appendix does not aim at giving a detailed introduction to the pertur-
bation expansion of the one-particle nonequilibrium Green’s function (1pNEGF) or
the one-particle self-energy (1pSE). For a comprehensive discussion on this topic—
including the explanation of the diagram technique for the 1pSE and the Luttinger-
Ward functional Φ—the reader is referred to Ref. [91] or the textbooks [55, 56].
Instead, we here give a derivation of two relations used in Sect. 2.3.2. First, we
show how to evaluate functional derivatives of a contour-ordered product, and, sec-
ond, we give details on how to arrive at Eqs. (2.57) and (2.58).

B.1 Derivative of a Contour-Ordered Product

For a contour-ordered product of two operators â and b̂ in the Heisenberg picture,
we want to calculate the derivative of its average with respect to a time-dependent
scalar function c

(1)
ij (t̄), i.e., with t and t ′ located on the Keldysh contour,

δ

δc
(1)
ij (t̄)

〈

T̂C â(t)b̂
(

t ′
)〉

. (B.1)

In order to evaluate expression (B.1), we first consider the change of the time-
evolution operator Û (t, t ′) → Û (t, t ′)+ δÛ(t, t ′) when the system’s Hamiltonian is
perturbed according to Ĥ (t) → Ĥ (t) + δĤ (t). It is straightforward to show1, that
δÛ(t, t ′) is generally given by,

δÛ
(

t, t ′
)= − i

�

∫ t ′

t

dt̄ Û (t, t̄ )δĤ (t̄)Û
(

t̄ , t ′
)

. (B.2)

1Using the equation(s) of motion of the time-evolution operator, cf. Eq. (2.4).
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In the following, we choose the perturbation to be δĤ (t) =∑ij δc
(1)
ij (t)ρ̂1,ij , where

ρ̂1,ij = f̂
†
i f̂j is the 1pRDM. If we assume t ≤ t̄ ≤ t ′, we can write,

δÛ(t, t ′)
δc

(1)
ij (t̄)

= − i

�

∑

kl

∫ t ′

t

d ¯̄t Û (t, ¯̄t )
δc

(1)
kl ( ¯̄t )

δc
(1)
ij (t̄)

ρ1,klÛ
( ¯̄t , t ′

)

= − i

�
Û
(

t ′, t̄
)

ρ1,ij Û
(

t̄ , t ′
)

, (B.3)

where we have used,

δc
(1)
kl (t)

δc
(1)
ij (t ′)

= δkiδlj δ
(

t − t ′
)

. (B.4)

Now, relation (B.3) helps us to rewrite Eq. (B.1). To this end, we use the definition
of the average 〈. . .〉 in terms of successive time evolutions (compare with Eq. (2.9)).
For t > t ′, we obtain,

δ〈T̂C â(t)b̂(t ′)〉
δc

(1)
ij (t̄)

= δ

δc
(1)
ij (t̄)

Tr {Û(t0 − iβ, t)âÛ (t, t ′)b̂Û (t ′, t0)}
Tr {Û (t0 − iβ, t0)}

, (B.5)

which, by applying the chain rule, evaluates to (Z0 = Tr {Û (t0 − iβ, t0)}),
δ〈T̂C â(t)b̂(t ′)〉

δc
(1)
ij (t̄)

= − iθC (t ′ − t̄ )

�Z0
Tr
{

Û (t0 − iβ, t)âÛ
(

t, t ′
)

b̂Û
(

t ′, t̄
)

ρ1,ij Û (t̄ , t0)
}

− iθC (t̄ − t ′)θC (t − t̄ )

�Z0
Tr
{

Û (t0 − iβ, t)âÛ (t, t̄)ρ1,ij Û
(

t̄ , t ′
)

b̂Û
(

t ′, t0
)}

− iθC (t̄ − t)

�Z0
Tr
{

Û (t0 − iβ, t̄)ρ1,ij Û (t̄ , t)âÛ
(

t, t ′
)

b̂Û
(

t ′, t0
)}

+ i

�Z2
0

Tr
{

Û (t0 − iβ, t)âÛ
(

t, t ′
)

b̂Û
(

t ′, t0
)}

Tr
{

Û (t0 − iβ, t̄)ρ1,ij Û (t̄ , t0)
}

,

= − i

�

〈

T̂C â(t)b̂
(

t ′
)

ρ1,ij (t̄)
〉+ i

�

〈

T̂C â(t)b̂
(

t ′
)〉〈

ρ1,ij (t̄ )
〉

. (B.6)

Note, that the last equality also holds for t < t ′, i.e., it represents the final result for
the functional derivative:

δ〈T̂C â(t)b̂(t ′)〉
δc

(1)
ij (t̄)

= i

�

〈

T̂C â(t)b̂
(

t ′
)〉〈

ρ1,ij (t̄)
〉− i

�

〈

T̂C â(t)b̂
(

t ′
)

ρ1,ij (t̄)
〉

. (B.7)

We note that the r.h.s. of Eq. (B.7) contains two contributions each of which in-
cludes four operators. The first term is Hartree-like (i.e., it contains a product of
two two-operator expectation values) and the second term includes a four-operator
expectation value.



B.2 Equations for Σ(1) and δG(1)/δv(1) in Terms of δΣ(1)/δv(1) 117

B.2 Equations for Σ(1) and δG(1)/δv(1) in Terms of δΣ(1)/δv(1)

In the second part of Sect. 2.3.2, we have discussed on how one can gradually gen-
erate higher-order approximations of the one-particle self-energy. To this end, one
iterates Eq. (2.57) under the knowledge of Eq. (2.58). For the sake of completeness,
we want to give a brief derivation of these two important equations.

We start with the second one, i.e., with Eq. (2.58) and review the KBEs in the
closed form (space and spin indices are omitted; h(1)(t) = t (1) + v(1)(t)),

{

i�
∂

∂t
− h(1)(t)

}

G(1)
(

t, t ′
) = δC

(

t − t ′
)+
∫

C
d¯̄t Σ(1)(t, ¯̄t )G(1)

( ¯̄t , t ′
)

,

G(1)
(

t, t ′
)
{

−i�
∂

∂t ′
− h(1)

(

t ′
)
}

= δC
(

t − t ′
)+
∫

C
d¯̄t G(1)(t, ¯̄t )Σ(1)

( ¯̄t , t ′
)

.

(B.8)

Differentiation of the KBEs with respect to v(1)(t̄) leads to,
{

i�
∂

∂t
− h(1)(t)

}
δG(1)(t, t ′)

δv(1)(t̄)
− δC

(

t − t ′
)

G(1)
(

t, t ′
)

=
∫

C
d¯̄t
{

δΣ(1)(t, ¯̄t )

δv(1)(t̄)
G(1)
( ¯̄t , t ′

)+ Σ(1)(t, ¯̄t )
δG(1)( ¯̄t , t ′)

δv(1)(t̄)

}

, (B.9)

and a corresponding adjoint equation where t and t ′ are exchanged. A general solu-
tion of these equations for δG(1)/δv(1) is of the form [88],

δG(1)(t, t ′)
δv(1)(t̄)

= G(1)(t, t̄ )G(1)
(

t̄ , t ′
)

+
∫

C
dt1

∫

C
dt2 G(1)(t, t1)

δΣ(1)(t1, t2)

δv(1)(t̄ )
G(1)
(

t2, t
′)

+ Y
(

t, t ′, t̄
)

, (B.10)

if the three-point auxiliary function Y(t, t ′, t̄) obeys,
{

i�
∂

∂t
− h(1)(t)

}

Y
(

t, t ′, t̄
)=
∫

C
d¯̄t Σ(1)(t, ¯̄t )Y

( ¯̄t , t ′, t̄
)

, (B.11)

and its adjoint with t ↔ t ′. One easily proves this result by insertion and use of (B.8).
Next, all terms in Eq. (B.10) must be consistent with the KMS boundary condi-
tions, cf. Eq. (2.22)(a) and (b), i.e., in particular, Y(t0 − iβ, t ′, t̄) = −Y(t0, t

′, t̄) and
Y(t, t0 − iβ, t̄) = −Y(t, t0, t̄). As this must be fulfilled for all times t̄ , it follows that
Y is either independent of t̄ and equals the 1pNEGF or is zero. The former case is
contradictory in the physical units. Therefore, it is Y = 0, and we obtain Eq. (2.58)
which can be written also as,

δG(1)(t, t ′)
δv(1)(t1)

=
∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )G(1)

( ¯̄t , t ′
)

Γ (t̄ ¯̄t , t1), (B.12)

with the “vertex” function,
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Γ
(

t t ′, t̄
)= δC

(

t − t ′
)

δC
(

t ′ − t̄
)+ Σ(1)(t, t ′)

δv(1)(t̄)
. (B.13)

In order to derive Eq. (2.57), we insert Eq. (B.12) into Eq. (2.51) and obtain,
{

i�
∂

∂t
− h(1)(t)

}

G(1)
(

t, t ′
)− δC

(

t − t ′
)

= −i�
∫

C
dt1 w(2)(t − t1)G

(1)
(

t1, t
+
1

)

G(1)
(

t, t ′
)

+ i�
∫

C
dt1

∫

C
dt̄
∫

C
d¯̄t w(2)

(

t+ − t1
)

G(1)(t, t̄ )G(1)
( ¯̄t , t ′

)

Γ (t̄ ¯̄t , t1).

(B.14)

The r.h.s. must be equal to the collision integral
∫

C dt̄ Σ(1)(t, t̄ )G(1)(t̄ , t ′) in the
Kadanoff-Baym equations. Therefore, we can extract the self-energy to be of the
form,

Σ(1)
(

t, t ′
)= −i�δC

(

t − t ′
)
∫

C
dt̄ w(2)(t − t̄ )G(1)

(

t̄ , t̄+
)

+ i�
∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )w(2)

(

t+ − ¯̄t )Γ (t̄ t ′, ¯̄t ). (B.15)

Reinserting the definition of the vertex function yields,

Σ(1)
(

t, t ′
)= −i�δC

(

t − t ′
)
∫

C
dt̄ w(2)(t − t̄ )G(1)

(

t̄ , t̄+
)

+ i�w(2)
(

t+ − t ′
)

G(1)
(

t, t ′
)

+ i�
∫

C
dt̄
∫

C
d¯̄t G(1)(t, t̄ )w(2)

(

t+ − ¯̄t ) Σ(t̄t ′)
δv(1)( ¯̄t )

. (B.16)

This is Eq. (2.57).
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